Floresta e Ambiente
https://floram.org/article/doi/10.1590/2179-8087.170764
Floresta e Ambiente
Original Article Silviculture

Are Seeds of Genipa americana L. (Rubiaceae) Tolerance to Water Submersion?

Julielen Zanetti Brandani; Mário Soares Junglos; Etenaldo Felipe Santiago; Silvana de Paula Quintão Scalon; Rosilda Mara Mussury

Downloads: 0
Views: 1380

Abstract

ABSTRACT: The knowledge of the germination responses of seeds from plants growing along river margins or in areas susceptible to flooding is an important factor in the adoption of restoration practices. Considering that maturation of fruits of Genipa Americana L. when river margins are flooded, we raised some questions: Is seed germination of this species affected by water submersion, and, do distinct seed populations present differences in germination? Seeds of G. Americana were submerged in water for different periods to assess the germination and growing responses, using populations from different locations. Water submersion decreased the germination percentage and the germination speed index, and increased seed mean germination time in both populations. Growth was found to be hampered for most variables in the different seed populations. The adaptation of G. Americana to flooding involves the seeds being tolerant to submersion, with this factor not being effective in distinguishing populations studied here.

Keywords

anoxia, germination, hypoxia, phenotypic plasticity, populations

References

Barbosa RMT, Almeida AAF, Mielke MS, Loguercio LL, Mangabeira PA, Gomes FP. A physiological analysis of Genipa americana L.: a potential phytoremediator tree for chromium polluted watersheds. Environmental and Experimental Botany 2007; 61(3): 264-271. http://dx.doi.org/10.1016/j.envexpbot.2007.06.001.

Botezelli L, Davide AC, Malavasi MM. Características dos frutos e sementes de quatro procedências de Dipteryx alata Vogel (Baru). Cerne 2000; 6(1): 9-18.

Buijse AD, Coops H, Staras M, Jans LH, Van Geest GJ, Grift RE et al. Restoration strategies for river floodplains along large lowland rivers in Europe. Freshwater Biology 2002; 47(4): 889-907. http://dx.doi.org/10.1046/j.1365-2427.2002.00915.x.

Carvalho PER. Espécies arbóreas brasileiras. Brasília: Embrapa Florestas; 2008.

Dat J, Vandenabeele S, Vranová E, Van Montagu M, Inzé D, Van Breusegem F. Dual action of the active oxygen species during plant stress responses. Cellular and Molecular Life Sciences 2000; 57(5): 779-795. PMid:10892343.

Daws MI, Lydall E, Chmielarz P, Leprince O, Matthews S, Thanos CA et al. Developmental heat sum influences recalcitrant seed traits in Aesculus hippocastanum across Europe. The New Phytologist 2004; 162(1): 157-166. http://dx.doi.org/10.1111/j.1469-8137.2004.01012.x.

de Jong G. Evolution of phenotypic plasticity: patterns of plasticity and the emergence of ecotypes. The New Phytologist 2005; 166(1): 101-117. http://dx.doi.org/10.1111/j.1469-8137.2005.01322.x. PMid:15760355.

Donatti CI, Guimarães PR, Galetti M, Pizo MA, Marquitti FM, Dirzo R Analysis of a hyper-diverse seed dispersal network: modularity and underlying mechanisms. Ecology Letters 2011; 14(8): 773-781. http://dx.doi.org/10.1111/j.1461-0248.2011.01639.x. PMid:21699640.

Edmond JB, Drapala WJ. The effects of temperature, sand and soil, and acetone on germination of okra seed. Journal of the American Society for Horticultural Science 1958; 71: 428-434.

Ferreira DF. Sisvar: um sistema computacional de análise estatística. Ciência e Agrotecnologia 2011; 35: 1039-1042. http://dx.doi.org/10.1590/S1413-70542011000600001.

Gianoli E, Gonzalez-Teuber M. Environmental heterogeneity and population differentiation in plasticity to drought in Convolvulus chilensis (Convolvulaceae). Evolutionary Ecology 2005; 19(6): 603-613. http://dx.doi.org/10.1007/s10682-005-2220-5.

Givnish TJ, Ames M, McNeal JR, McKain MR, Steele PR, De Pamphilis C et al. Wet al.Assembling the tree of the monocotyledons: Plastome sequence phylogeny and evolution of Poales. Annals of the Missouri Botanical Garden 2010; 97(4): 584-616. http://dx.doi.org/10.3417/2010023.

Ghalambor CK, McKay JK, Carroll SP, Reznick DN. Adaptive versus non-adaptive phenotypic plasticity and the potential for contemporary adaptation in new environments. Functional Ecology 2007; 21(3): 394-407. http://dx.doi.org/10.1111/j.1365-2435.2007.01283.x.

Glenz C, Schlaepfer R, Iorgulescu I, Kienast F. Flooding tolerance of Central European tree and shrub species. Forest Ecology and Management 2006; 235(1-3): 1-13. http://dx.doi.org/10.1016/j.foreco.2006.05.065.

Kestring D, Klein J, Menezes LCCR, Rossi MN. Imbibition phases and germination response of Mimosa bimucronata (Fabaceae: Mimosoideae) to water submersion. Aquatic Botany 2009; 91(2): 105-109. http://dx.doi.org/10.1016/j.aquabot.2009.03.004.

Kozlowski TT. Responses of woody plants to flooding and salinity. Tree Physiology 1997; 1(7): 1-29.

Lamarca EV, Silva CV, Barbedo CJ. Limites térmicos para a germinação em função da origem de sementes de espécies de Eugenia (Myrtaceae) nativas do Brasil. Acta Botanica Brasílica 2011; 25(2): 293-300. http://dx.doi.org/10.1590/S0102-33062011000200005.

Lorenzi H. Árvores brasileiras: manual de identificação e cultivo de plantas arbóreas nativas do Brasil. Nova Odessa: Instituto Plantarum; 2008.

Lucas CM, Bruna EM, Nascimento CMN. Seedling co-tolerance of multiple stressors in a disturbed tropical floodplain forest. Ecosphere 2013; 4(1): 1-20. http://dx.doi.org/10.1890/ES12-00287.1.

Lucas CM, Mekdece F, Nascimento CMN, Holanda AS, Braga J, Dias S et al. Effects of short-term and prolonged saturation on seed germination of Amazonian floodplain forest species. Aquatic Botany 2012; 99: 49-55. http://dx.doi.org/10.1016/j.aquabot.2012.02.004.

Lynn DE, Waldren S. Physiological variation in populations of Ranunculus repens L. (Creeping Buttercup) from the temporary limestone lakes (Turloughs) in the West of Ireland. Annals of Botany 2002; 89(6): 707-714. http://dx.doi.org/10.1093/aob/mcf125. PMid:12102526.

Maguire J. Speed of germination-aid in selection and evaluation for seedling emergence and vigor. Crop Science 1962; 2(2): 176-177. http://dx.doi.org/10.2135/cropsci1962.0011183X000200020033x.

Mattana E, Daws MI, Fenu G, Bacchetta G. Adaptation to habitat in Aquilegia species endemic to Sardinia (Italy): Seed dispersal, germination and persistence in the soil. Plant Biosystems 2012; 146(2): 374-383. http://dx.doi.org/10.1080/11263504.2011.557097.

Melo RB, Franco AC, Silva CO, Piedade MT, Ferreira CS. Seed germination and seedling development in response to submergence in tree species of the Central Amazonian floodplains. AoB Plants 2015; 7: 1-12. PMid:25922297.

Parolin P. Seed germination and early establishment of 12 tree species from nutrient-rich and nutrient-poor Central Amazonian floodplains. Aquatic Botany 2001; 70(2): 89-103. http://dx.doi.org/10.1016/S0304-3770(01)00150-4.

Petrov V, Hille J, Mueller-Roeber B, Gechev TS. ROS-mediated abiotic stress-induced programmed cell death in plants. Frontiers in Plant Science 2015; 69(2): 1-16. PMid:25741354.

Santiago EF, Larentis TC, Barbosa VM, Caires ARL, Morais GA, Súarez YR. Can the chlorophyll-a fluorescence be useful in identifying acclimated young plants from two populations of Cecropia pachystachya Trec. (Urticaceae), under elevated CO2 concentrations? Journal of Fluorescence 2015; 25(1): 49-57. http://dx.doi.org/10.1007/s10895-014-1478-9. PMid:25400137.

Santiago EF, Paoli AAS. Respostas morfológicas em Guibourtia hymenifolia (Moric.) J. Leonard (Fabaceae) e Genipa americana L. (Rubiaceae), submetidas ao estresse por deficiência nutricional e alagamento do substrato. Revista Brasileira de Botanica. Brazilian Journal of Botany 2007; 30(1): 131-140. http://dx.doi.org/10.1590/S0100-84042007000100013.

Sasidharan R, Bailey-Serres J, Ashikari M, Atwell BJ, Colmer TD, Fagerstedt K et al. Community recommendations on terminology and procedures used in flooding and low oxygen stress research. The New Phytologist 2017; 214(4): 1403-1407. http://dx.doi.org/10.1111/nph.14519. PMid:28277605.

Schlichting CD, Wund MA. Phenotypic plasticity and epigenetic marking: an assessment of evidence for genetic accommodation. Evolution 2014; 68(3): 656-672. http://dx.doi.org/10.1111/evo.12348. PMid:24410266.

Strong JN, Fragoso JMV. Seed Dispersal by Geochelone carbonaria and Geochelone denticulata in Northwestern Brazil. Biotropica 2006; 38(5): 683-686. http://dx.doi.org/10.1111/j.1744-7429.2006.00185.x.

Stroo H, Ward CH. In situ remediation of chlorinated solvent plumes.New York: Springer; 2010. http://dx.doi.org/10.1007/978-1-4419-1401-9.

Valladares F, Gianoli E, Gómez JM. Ecological limits to plant phenotypic plasticity. The New Phytologist 2007; 176(4): 749-763. http://dx.doi.org/10.1111/j.1469-8137.2007.02275.x. PMid:17997761.

Vieira RF, Costa TSA, Silva DB, Ferreira FR, Sano SM. Frutas nativas da região Centro-Oeste. Brasília: Embrapa Recursos Genéticos e Biotecnologia; 2006.

Voesenek LACJ, Bailey-Serres J. Flooding tolerance: O2 sensing and survival strategies. Current Opinion in Plant Biology 2013; 16(5): 647-653. http://dx.doi.org/10.1016/j.pbi.2013.06.008. PMid:23830867.
 

5b97b6a60e8825210388bac9 floram Articles
Links & Downloads

FLORAM

Share this page
Page Sections