Floresta e Ambiente
https://floram.org/article/doi/10.1590/2179-8087.124117
Floresta e Ambiente
Original Article Wood Science and Technology

Potential of Texture Analysis for Charcoal Classification

Bruno Geike de Andrade; Benedito Rocha Vital; Angélica de Cássia Oliveira Carneiro; Vanessa Maria Basso; Francisco de Assis de Carvalho Pinto

Downloads: 0
Views: 158

Abstract

Abstract: Charcoal produced from reforested wood can be distinguished from the charcoal derived from the wood of native species. This identification is very important for the trade, control and monitoring of charcoal production in Brazil. This study investigated the potential of texture analysis for classifying the charcoal based on origin (eucalyptus or native) and species. A total of 17 wood species were studied, five of which belonged to genus Eucalyptus and 12 were native to the Zona da Mata Mineira. Texture features based on the gray level co-occurrence matrix were extracted from digital images. The linear discriminant analysis was used to classify the images with these features. Employing 10 features, 96.2% accuracy was achieved for the classification by origin and 90.4% for the categorization by species. Texture analysis was shown to be a favorable and effective method that could facilitate the establishment of semiautomated techniques to classify the charcoal based on origin or species.

Keywords

discriminant analysis, gray level co-occurrence matrix, image analysis

References

Associação Mineira de Silvicultura – AMS. Anuário estatístico 2012. Belo Horizonte: AMS; 2013.

Congalton RG. A review of assessing the accuracy of classifications of remotely sensed data. Remote Sensing of Environment 1991; 37(1): 35-46. http://dx.doi.org/10.1016/0034-4257(91)90048-B.

Fisher RA. The use of multiple measurements in taxonomic problems. Annals of Eugenics 1936; 7(2): 179-188. http://dx.doi.org/10.1111/j.1469-1809.1936.tb02137.x.

Food and Agriculture Organization of the United Nations – FAO. FAOSTAT – Forestry [online]. Rome: FAO; 2017 [cited 2017 Dec 29]. Available from: http://www.fao.org/faostat/en/#data/FO

Gonçalves TAP, Ballarin AW, Nisgoski S, Muñiz GIB. Contribution to the identification of charcoal origin in Brazil I – anatomical characterization of corymbia and eucalyptus. Maderas. Ciencia y Tecnología 2014; 16(3): 323-336.

Gonçalves TAP, Marcati CR, Scheel-Ybert R. The effect of carbonization on wood structure of Dalbergia Violacea, Stryphnodendron Polyphyllum, Tapirira Guianensis, Vochysia Tucanorum, and Pouteria Torta from the Brazilian Cerrado. International Association of Wood Anatomists Journal 2012; 33(1): 73-90. http://dx.doi.org/10.1163/22941932-90000081.

Gonçalves TAP, Nisgoski S, Oliveira JS, Marcati CR, Ballarin AW, Muñiz GIB. A contribution to the identification of charcoal origin in Brazil II – Macroscopic characterization of Cerrado species. Anais da Academia Brasileira de Ciências 2016; 88(2): 1045-1054. http://dx.doi.org/10.1590/0001-3765201620150322. PMid:27192198.

Gonçalves TAP, Scheel-Ybert R. Charcoal anatomy of Brazilian species. I. Anacardiaceae. Anais da Academia Brasileira de Ciências 2016;88(3 Suppl): 1711-1725. http://dx.doi.org/10.1590/0001-3765201620150433. PMid:27901191.

Haralick RM, Shanmugam K, Dinstein I. Textural features for image classification. IEEE Transactions on Systems, Man, and Cybernetics 1973; 6(6): 610-621. http://dx.doi.org/10.1109/TSMC.1973.4309314.

Hudson WD, Ramm CW. Correct formulation of the kappa coefficient of agreement. Photogrammetric Engineering and Remote Sensing 1987; 53(4): 421-422.

IAWA Committee. List of microscopic features for hardwood identification. International Association of Wood Anatomists Bulletin 1989; 10(2): 219-332.

Ibrahim I, Khairuddin ASM, Talip MSA, Arof H, Yusof R. Tree species recognition system based on macroscopic image analysis. Wood Science and Technology 2017; 51(2): 431-444. http://dx.doi.org/10.1007/s00226-016-0859-4.

Industria Brasileira de Árvores – IBÁ. Relatório Ibá [online]. São Paulo: IBÁ; 2017 [cited 2017 Dec 29]. Available from: http://iba.org/images/shared/Biblioteca/IBA_RelatorioAnual2017.pdf

Khalid M, Yusof R, Liew E, Nadaraj M. Design of an inteligent Wood species recognitions system. International Journal of Simulation System – Science and Technology 2008; 9(3): 9-19.

Martins JG, Oliveira LS, Britto AS Jr, Sabourin R. Forest species recognition based on dynamic classifier selection and dissimilarity feature vector representation. Machine Vision and Applications 2015; 26(2-3): 279-293. http://dx.doi.org/10.1007/s00138-015-0659-0.

MathWorks. Statistics and machine learning Toolbox™ user’s guide. Natick: The MathWorks; 2017. 9440 p.

Muñiz GIB, Carneiro ME, Batista FRB, Schardosin FZ, Nisgoski S. Wood and charcoal identification of five species from the miscellaneous group known in brazil as “angelim” by near-ir and wood anatomy. Maderas. Ciencia y Tecnología 2016; 18(3): 505-522.

Muñiz GIB, Carneiro ME, Nisgoski S, Ramirez MGL, Magalhães WLE. SEM and NIR characterization of four forest species charcoal. Wood Science and Technology 2013; 1(4): 10-22. http://dx.doi.org/10.1007/s00226-013-0539-6.

Muñiz GIB, Nisgoski S, França RF, Schardosin FZ. Anatomia comparativa da madeira e carvão de Cedrelinga catenaeformis Ducke e Enterolobium schomburgkii Benth. para fins de identificação. Scientia Forestalis 2012b; 40(94): 291-297.

Muñiz GIB, Nisgoski S, Schardosin FZ, França RF. Anatomia do carvão de espécies florestais. Cerne 2012a; 18(3): 471-477. http://dx.doi.org/10.1590/S0104-77602012000300015.

Nisgoski S, Muñiz GIB, França RF, Batista FRR. Anatomia do lenho carbonizado de Copaifera cf. langsdorfii Desf. e Dipteryx odorata (Aubl.) Wild. Ciência da Madeira 2012; 3(2): 66-79. http://dx.doi.org/10.12953/2177-6830.v03n02a01.

Nisgoski S, Muñiz GIB, Gonçalves TAP, Ballarin AW. Use of visible and near-infrared spectroscopy for discrimination of eucalypt species by examination of solid samples. Journal of Tropical Forest Science 2017a; 29(3): 371-379. http://dx.doi.org/10.26525/jtfs2017.29.3.371379.

Nisgoski S, Muñiz GIB, Morrone SR, Schardosin FZ, França RF. NIR and anatomy of wood and charcoal from Moraceae and Euphorbiaceae species. Ciência da Madeira 2015; 6(3): 183-190. http://dx.doi.org/10.12953/2177-6830/rcm.v6n3p183-190.

Nisgoski S, Oliveira AA, Muñiz GIB. Artificial neural network and SIMCA classification in some wood discrimination based on near-infrared spectra. Wood Science and Technology 2017b; 51(4): 929-942. http://dx.doi.org/10.1007/s00226-017-0915-8.

Oliveira AA, Siqueira PH, Nisgoski S, Muñiz GIB, Ferreira JH. Identificação de Madeiras utilizando a Espectrometria no Infravermelho Próximo e Redes Neurais Artificiais. Tendências em Matemática Aplicada e Computacional 2015; 16(2): 81-95. http://dx.doi.org/10.5540/tema.2015.016.02.0081.

Paula PL Fo, Oliveira LS, Nisgoski S, Britto AS Jr. Forest species recognition using macroscopic images. Machine Vision and Applications 2014; 25(4): 1019-1031. http://dx.doi.org/10.1007/s00138-014-0592-7.

Pedrini H, Schwartz WR. Análise de imagens digitais: princípios, algoritmos e aplicações. São Paulo: Thomson Learning; 2008. 508 p.

Piuri V, Scotti F. Design of an automatic wood types classification system by using fluorescence spectra. IEEE Transactions on Systems, Man and Cybernetics. Part C, Applications and Reviews 2010; 40(3): 358-366. http://dx.doi.org/10.1109/TSMCC.2009.2039479.

Ramalho FMG, Hein PRG, Andrade JM, Napoli A. Potential of near-infrared spectroscopy for distinguishing charcoal produced from planted and native wood for energy purpose. Energy & Fuels 2017; 31(2): 1593-1599. http://dx.doi.org/10.1021/acs.energyfuels.6b02446.

Scheel-Ybert R, Gonçalves TAP. Primeiro atlas antracológico de espécies brasileiras. Rio de Janeiro: Museu Nacional; Universidade Federal do Rio de Janeiro; 2017.

Wang HJ, Zhang G, Qi H. Wood recognition using image texture features. PLoS One 2013; 8(10): e76101. http://dx.doi.org/10.1371/journal.pone.0076101. PMid:24146821.

Yusof R, Khalid M, Khairuddin ASM. Application of kernel-genetic algorithm as nonlinear feature selection in tropical wood species recognition system. Computers and Electronics in Agriculture 2013; 93: 68-77. http://dx.doi.org/10.1016/j.compag.2013.01.007.

Zamri MIPB, Khairuddin ASM, Mokhtar N, Yusof R. Statistical feature extraction method for wood species recognition system. world academy of Science, Engineering and Technology International Journal of Computer and Information Engineering 2016; 10(3): 441-444.
 

5d0a30ff0e88259a12a20608 floram Articles
Links & Downloads

FLORAM

Share this page
Page Sections