Floresta e Ambiente
https://floram.org/article/doi/10.1590/2179-8087.110717
Floresta e Ambiente
Original Article

Estimating Above-Ground Biomass of Araucaria angustifolia (Bertol.) Kuntze Using LiDAR Data

Franciel Eduardo Rex; Ana Paula Dalla Corte; Sebastião do Amaral Machado; Carlos Alberto Silva; Carlos Roberto Sanquetta

Downloads: 0
Views: 73

Abstract

ABSTRACT: The objective of this study was to test the performance of canopy data obtained from Airborne Laser Scanner (ALS) in generating estimates of above-ground biomass (AGB) of Araucaria angustifolia (Bertol.) Kuntze individuals. A cloud of ALS points located in a fragment of native urban forest in Curitiba, Paraná was used. The procedures consisted of: classifying points; obtaining and smoothing the Canopy Height Model (CHM); detecting peaks and segmenting canopy using eCognition software. Mathematical models were adjusted to estimate the AGB from the crown areas. Two equations were required to estimate the individual AGB, while R2 (%) values of 96.19 and 98.89 were found. The total AGB stock found was 264.333 kg. The LiDAR technology and the methods for obtaining the information used in this work constitute non-destructive and precise tools for quantifying biomass in native forests.

Keywords

native forest, estimation equations, remote sensing

References

Anaya JA, Chuvieco E, Palacios-Orueta A. Aboveground biomass assessment in Colombia: a remote sensing approach. Forest Ecology and Management 2009; 257(4): 1237-1246. 10.1016/j.foreco.2008.11.016

Anderson J, Martin ME, Smith ML, Dubayah RO, Hofton MA, Hyde P et al. The use of waveform lidar to measure northern temperate mixed conifer and deciduous forest structure in New Hampshire. Remote Sensing of Environment 2006; 105(3): 248-261. 10.1016/j.rse.2006.07.001

Chave J, Réjou-Méchain M, Búrquez A, Chidumayo E, Colgan MS, Delitti WBC et al. Improved allometric models to estimate the above-ground biomass of tropical trees. Global Change Biology 2014; 20(10): 3177-3190. 10.1111/gcb.12629

Corona P. Consolidating new paradigms in large-scale monitoring and assessment of forest ecosystems. Environmental Research 2016; 144: 8-14. 10.1016/j.envres.2015.10.017

Dean TJ, Cao QV, Roberts SD, Evans DL. Measuring heights to crown base and crown median with lidar in a mature, even-aged loblolly pine stand. Forest Ecology and Management 2009; 257(1): 126-133. 10.1016/j.foreco.2008.08.024

Drake JB, Knox RG, Dubayah RO, Clark DB, Condit R, Blair JB et al. Above-ground biomass estimation in closed canopy Neotropical forests using LiDAR remote sensing: factors affecting the generality of relationships. Global Ecology and Biogeography 2003; 12(2): 147-159. 10.1046/j.1466-822X.2003.00010.x

Dubayah RO, Knox RG, Hofton MA, Blair JB, Drake JB. Land surface characterization using LiDAR remote sensing. In: Hill M, Aspinall R, editors. Spatial information for land use management. Boca Raton: CRC Press; 2000. p. 25-38.

Ebling AA, Péllico Netto S, Watzlawick LF, Miranda ROV, Abrão SF. Ecologia e projeção diamétrica de três grupos arbóreos em remanescente de Floresta Ombrófila Mista em São Francisco de Paula, RS. Floresta 2013; 43(2): 261-270. 10.5380/rf.v43i2.28604

Food and Agriculture Organization of the United Nations - FAO. Global forest resources assessment 2010: main report. 2010 [cited 2019 May 27]. Available from: Available from: https://bit.ly/1oqbvL6

Freitas SR, Mello MCS, Cruz CBM. Relationships between forest structure and vegetation indices in Atlantic Rainforest. Forest Ecology and Management 2005; 218(1-3): 353-362. 10.1016/j.foreco.2005.08.036Get

Gao J. Towards accurate determination of surface height using modern geoinformatic methods: possibilities and limitations. Progress in Physical Geography: Earth and Environment 2007; 31(6): 591-605. 10.1177/0309133307087084

Hall FG, Bergen K, Blair JB, Dubayah R, Houghton R, Hurtt G et al. Characterizing 3D vegetation structure from space: mission requirements. Remote Sensing of Environment 2011; 115(11): 2753-2775. 10.1016/j.rse.2011.01.024

He QS, Cao CX, Chen EX, Sun GQ, Ling FL, Pang Y et al. Forest stand biomass estimation using ALOS PALSAR data based on LiDAR-derived prior knowledge in the Qilian Mountain, western China. International Journal of Remote Sensing 2012; 33(3): 710-729. 10.1080/01431161.2011.577829

Houghton RA, Hall F, Goetz SJ. Importance of biomass in the global carbon cycle. Journal of Geophysical Research: Biogeosciences 2009; 114(G2): 1-13. 10.1029/2009JG000935

Hudak AT, Strand EK, Vierling LA, Byrne JC, Eitel JUH, Martinuzzi S et al. Quantifying aboveground forest carbon pools and fluxes from repeat LiDAR surveys. Remote Sensing of Environmente 2012; 123(1): 25-40. 10.1016/j.rse.2012.02.023

Intergovernmental Panel on Climate Change - IPCC. 2006 IPCC guidelines for national greenhouse gas inventories: a primer, prepared by the National Greenhouse Gas Inventories Programme, Eggleston H.S., Miwa K., Srivastava N. and Tanabe K. (eds). Japan: IGES; 2006.

Intergovernmental Panel on Climate Change - IPCC. IPCC Expert Meeting on National Forest GHG Inventories eds: H.S. Eggleston, N. Srivastava, K. Tanabe, J. Baasansuren, National Forest GHG Inventories: a stock taking. Japan: IGES ; 2010.

Isenburg M. LASTools: award-winning software for LiDAR processing. Version 111216 [software]. 2014 [cited 2017 Mar. 10]. Available from: Available from: https://bit.ly/2wp5P0z

Li H, Mausel P, Brondizio E, Deardorff D. A framework for creating and validating a non-linear spectrum-biomass model to estimate the secondary succession biomass in moist tropical forests. ISPRS J. Photogramm. ISPRS Journal of Photogrammetry and Remote Sensing 2010; 65(2): 241-254. 10.1016/j.isprsjprs.2010.01.002

Lu DS. The potential and challenge of remote sensing-based biomass estimation. International Journal of Remote Sensing 2006; 27(7): 1297-1328. 10.1080/01431160500486732

Macedo RC, Santos JR, Fonseca LMG, Almeida CM, Soares JV. Delimitação de copas em florestas clonais de Eucalyptus sp. através de classificação baseada em objeto. Revista Técnica do IEP 2012 [cited 2019 May 28]; 2(5): 37-43. Available from: Available from: https://bit.ly/2KaOKQ2

Machado SA, Augustynczik ALD, Nascimento RGM, Figura MA, Silva LCR, Miguel EP et al. Distribuição diamétrica de Araucaria angustifolia (Bert.) O. Ktse. em um fragmento de floresta ombrófila mista. Scientia Agraria 2009; 10(2): 103-110. 10.5380/rsa.v10i2.13575

Machado SA, Nascimento RGM, Miguel EP, Téo SJ, Augustynczik ALD. Distribution of total height, transverse area, and individual volume for Araucaria angustifolia (Bert.) O. Kuntze. Cerne 2010; 16(1): 12-21. 10.1590/S0104-77602010000100002

Machado SA, Santos AAP, Zamin NT, Nascimento RGM. Distribuição espacial de um fragmento de Floresta Ombrófila Mista Montana. Ciência Rural 2012; 42(6): 1013-1019. 10.1590/S0103-84782012005000029

Mitri GH, Gitas IZ. A performance evaluation of a burned area object-based classification model when applied to topograhically and non-topographically correct TM imagery. International Journal of Remote Sensing 2004; 25(14): 2863-2870. 10.1080/01431160410001688321

Munroe DK, Nagendra H, Southworth J. Monitoring landscape fragmentation in an inaccessible mountain area: Celaque National Park, Western Honduras. Landscape Urban Plan 2007; 83(2-3): 154-167. 10.1016/j.landurbplan.2007.04.001

Nelson T, Niemann KO, Wulder MA. Spatial statistical techniques for aggregating point objects extracted from high spatial resolution remotely sensed imagery. Journal of Geographical Systems 2002; 4(4): 423-433. 10.1007/s101090300092

Orellana E, Figueiredo Filho A, Péllico Netto S, Dias AN. Modelagem da distribuição diamétrica de espécies florestais em um fragmento de Floresta Ombrófila Mista. Árvore 2014; 38(2): 297-308. 10.1590/S0100-67622014000200010

Peel MC. Finlayson BL, McMahon TA. Updated world map of the Köppen-Geiger climate classification. Hydrology and Earth System Sciences 2007; 11: 1633-1644. 10.5194/hess-11-1633-2007

Popescu SC, Zhao K, Neuenschwander A, Lin C. Satellite LiDAR vs. small footprint airborne LiDAR: comparing the accuracy of aboveground biomass estimates and forest structure metrics at footprint level. Remote Sensing of Environment 2011; 115(11): 2786-2797. 10.1016/j.rse.2011.01.026

Reitz R, Klein RM. Araucariáceas. In: Reitz R, editor. Flora Ilustrada Catarinense. Itajaí: Herbário Barbosa Rodrigues; 1966. 62p.

Roberts SD, Dean TJ, Evans DL, McCombs JW, Harrington RL, Glass PA. Estimating individual tree leaf area in loblolly pine plantations using LiDAR-derived measurements of height and crown dimensions. Forest Ecology and Management 2005; 213(1-3): 54-70. 10.1016/j.foreco.2005.03.025

Rosenqvist A, Milne A, Lucas R, Imhoff M, Dobson C. A review of remote sensing technology in support of the Kyoto Protocol. Environment Science & Policy 2003; 6(5): 441-455. 10.1016/S1462-9011(03)00070-4

Sanquetta CR, Corte APD, Jacon AD. Crown area and trunk diameter relationship for tree species at a mixed-araucaria natural forest in the mid-southern Parana State, Brazil. Floresta 2011; 41(1): 63-72. 10.5380/rf.v41i1.21182

Sanquetta CR, Corte APD, Mognon F, Maas GCB, Rodrigues AL. Estimativa de carbono individual para Araucaria angustifolia. Pesquisa Agropecuária Tropical 2014; 44(1): 1-8. 10.1590/S1983-40632014000100006

Schikowski AB, Corte APD, Sanquetta CR. Modelagem do crescimento e de biomassa individual de Pinus. Pesquisa Florestal Brasileira 2013; 33(75): 269-278. 10.4336/2013.pfb.33.75.503

Schoeninger ER, Koehler HS, Watzlawick LF, Oliveira Filho PC. Uso de redes neurais artificiais como uma alternativa para mapeamento de biomassa e carbono orgânico no componente arbóreo de florestas naturais. Ambiência 2009 [cited 2019 May 28]; 4(3): 529-549. Available from: Available from: https://bit.ly/2WrWUKj

Silva HF, Ribeiro SC, Botelho AS, Faria RAVB, Teixeira MBR, Mello JM. Estimativa do estoque de carbono por métodos indiretos em área de restauração florestal em Minas Gerais. Scientia Forestalis 2015; 43(108): 943-953. 10.18671/scifor.v43n108.18

Silveira P. Estimativa da biomassa e carbono acima do solo em um fragmento de floresta ombrófila densa utilizando o método da derivação do volume comercial. Floresta 2010; 40(4): 789-800. 10.5380/rf.v40i4.20330

Soenen SA, Peddle DR, Hall RJ, Coburn CA, Hall FG. Estimating aboveground forest biomass from canopy reflectance model inversion in mountainous terrain. Remote Sensing of Environment 2010; 114(7): 1325-1337. 10.1016/j.rse.2009.12.012

Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt K, Tignor MMB, Miller HL, editors. Climate change 2007: the physical science basis. Cambridge: Cambridge University Press; 2007.

Sousa DG, Mincato RL, Kawakubo FS. Análise multitemporal do uso da terra utilizando imagens Landsat-5 TM da região de Alfenas, Sul de Minas Gerais, visando a conservação de fragmentos florestais. Revista Brasileira de Geografia Física 2015 [cited 2019 May 27]; 08(5): 1482-1492. Available from: Available from: https://bit.ly/2QsLv7K

Southworth J, Tucker C. The influence of accessibility, local institutions, and socioeconomic factors on forest cover change in the mountains of western Honduras. Mountain Research and Development 2001; 21(3): 276-283. 10.1659/0276-4741(2001)021%5B0276:TIOALI%5D2.0.CO;2

Suárez JC, Ontiveros C, Smith S, Snape S. Use of airborne LiDAR and aerial photography in the estimation of individual tree heights in forestry. Computers & Geosciences 2005; 31(2): 253-262. 10.1016/j.cageo.2004.09.015

Sun G, Ranson KJ, Kharuk VI. Radiometric slope correction for forest biomass estimation from SAR data in the Western Sayani Mountains, Siberia. Remote Sensing of Environment 2002; 79(2-3): 279-287. 10.1016/S0034-4257(01)00279-6

Tangki H, Chappell NA. Biomass variation across selectively logged forest within a 225-km2 region of Borneo and its prediction by Landsat TM. Forest Ecology and Management 2008; 256(11): 1960-1970. 10.1016/j.foreco.2008.07.018

Teixeira AMG, Soares-Filho BS, Freitas SR, Metzger JP. Modeling landscape dynamics in an Atlantic Rainforest region: implications for conservation. Forest Ecology and Management 2009; 257(4): 1219-1230. 10.1016/j.foreco.2008.10.011

Turner W, Spector S, Gardiner N, Fladeland M, Sterling E, Steininger M. (2003). Remote sensing for biodiversity science and conservation. Trends in Ecology & Evolution 2003; 18(6): 306-314. 10.1016/S0169-5347(03)00070-3

Watzlawick LF. Estimativa de biomassa e carbono em floresta ombrófila mista e plantações florestais a partir de dados de imagens do satélite IKONOS II [tese]. Curitiba: Universidade Federal do Paraná; 2003.

Zolkos SG, Goetz SJ, Dubayah R. A meta-analysis of terrestrial aboveground biomass estimation using lidar remote sensing. Remote Sensing of Environment 2013; 128: 289-298. 10.1016/j.rse.2012.10.017
 

5d8a53970e8825010ec51225 floram Articles
Links & Downloads

FLORAM

Share this page
Page Sections