25APR

FLORAM receives Impact Factor

We are pleased to announce that FLORAM has received its first impact factor rating in the 2022 Journal Citation Reports (JCR).

Now FLORAM has the highest impact factor among Brazilian Forest Sciences journals.

Floresta e Ambiente
https://floram.org/article/doi/10.1590/2179-8087.109617
Floresta e Ambiente
Original Article Silviculture

Residual Doses of Herbicide Affect the Initial Development of Hymenaea stigonocarpa

Kamilla Alves Barbosa; Walquíria Fernanda Teixeira; Luís Henrique Soares; Evandro Binotto Fagan

Downloads: 1
Views: 666

Abstract

Abstract: The aim of this study was to assess the effect of subdoses of 2,4-D + picloram on the emergence and initial growth of Hymenaea stigonocarpa. Three experiments were carried out. In the first one, the seeds were planted in sand with residues of 2,4-D + picloram (0; 0.02; 0.10; 0.20 and 0.40 L ha -1 ). The second experiment was conducted with seedlings, using the same treatment of experiment I. In experiment III, the seeds were planted in Red Latosol contaminated with subdoses of 2,4-D + picloram (0; 0.02; 0.08; 0.24; 0.48 and 0.96 L ha-1). The contamination of the sand substrate with subdoses of 2,4-D + picloram inhibits the emergence and senescence of Hymenaea stigonocarpa plants. Moreover, when seeds of this species were cultivated in Red Latosol with residual doses between 0.04 and 0.96 L ha-1, emergence and emergence speed index declined.

Keywords

jatobá-do-cerrado, herbicide residue, tolerance

References

Alvarenga MIN, Gontijo RAN, Alves HMR, Nogueira ND, Nóbrega JCA. Destinação segura das embalagens vazias de agrotóxicos. Informe Agropecuário 2003; 24(220): 7-17.

Ashton FM, Crafts AS. Mode of action of herbicides. New York: John Wiley; 1973.

Barros RE, Tuffi Santos LD, Cruz LR, Faria RM, Costa CA, Felix RC. Physiological response of eucalyptus species grown in soil treated with auxin-mimetic herbicides. Planta Daninha 2014; 32(3): 629-638. 10.1590/S0100-83582014000300019

Bendito BPC, Souza PA, Ferreira RQS, Cândido JB, Souza PB. Espécies do cerrado com potencial para recuperação de áreas degradadas, Gurupi (TO). Revista Agrogeoambiental 2018; 10(2): 99-110. 10.18406/2316-1817v10n220181117

D’Antonino L, Silva AA, Ferreira LR, Cecon PR, Quirino ALS, Freitas LHL. Efeitos de culturas na persistência de herbicidas auxínicos no solo. Planta Daninha 2009; 27(2): 371-378. 10.1590/S0100-83582009000200021

Durigan G. Bases e diretrizes para a restauração da vegetação de cerrado. In: Kageyama PY, Oliveira RE, Moraes LFO, Engel VE, Gandara FB, editors. Restauração ecológica de sistemas naturais. Botucatu: FEPAP; 2003. p. 187-204.

Empresa Brasileira de Pesquisa Agropecuária - Embrapa. Centro Nacional de Pesquisa de Solos. Sistema brasileiro de classificação de solos. 2nd ed. Rio de Janeiro: Embrapa Solos; 2006. 306 p.

Ferreira DF. Sisvar: sistema de análise de variância. Versão 5.3. Lavras: UFLA; 2010.

Franceschi M, Felito RA, Yamashita OM, Lorenzon J, Carvalho MAC. Lixiviação do herbicida 2,4-D + picloram em Latossolo vermelho amarelo distrófico. Enciclopédia Biosfera 2015; 11(22): 2151-2161. 10.18677/Enciclopedia_Biosfera_2015_188

Hager A, Nordby D. Herbicide persistence and how to test for residues in soils. In: Bissonnette S. Ilinois agricultural pest management handbook. Illinois: University of Illinois; 2004. p. 323-326.

Hansen H, Grossmann K. Auxin-induced ethylene triggers abscisic acid biosynthesis and growth inhibition. Plant Physiology 2000; 124(3): 1437-48. 10.1104/pp.124.3.1437

Johnson CM, Stout PR, Broyer TC, Carlton AB. Comparative chlorine requirement of different plant species. Plant and Soil 1957; 8(4): 337-353. 10.1007/BF01666323

Maguire JD. Speed of germination-aid in selection and evaluation for seedling emergence and vigor. Crop Science 1962; 2(1): 176-177. 10.2135/cropsci1962.0011183X000200020033x

Mancuso MAC, Negrisoli E, Perim L. Efeito residual de herbicidas no solo (“Carryover”). Revista Brasileira de Herbicidas 2011; 10(2): 151-164. 10.7824/rbh.v10i2.106

Marschner P. Mineral nutrition of higher plants. 3rd ed. Amsterdam: Elsevier; 2012.

Mulder EG, Boxma R, Van Veen WL. The effect of molybdenum and nitrogen deficiencies on nitrate reduction in plant tissues. Plant Soil 1959; 10(4): 335-355. 10.1007/BF01666209

Nascimento ER, Yamashita OM. Desenvolvimento inicial de olerícolas cultivadas em solos contaminados com resíduos de 2,4-d + picloram. Semina: Ciências Agrárias 2009; 30(1): 47-54. 10.5433/1679-0359.2009v30n1p47

Peres-Oliveira MA, Bonfim-Silva EM, Silva VM, Vieira ECS. Persistence of 2,4-D and glyphosate in a Cerrado soil, Brazil. African Journal of Agricultural Research 2016; 11(11): 912-919. 10.13140/RG.2.1.4903.8481

Romero-Puertas MC, Rodríguez-Serrano M, Corpas FJ, Gómez M, Del Río A, Sandalio LM. Cadmium-induced subcellular accumulation of O2 and H2O2 in pea leaves. Plant Cell and Environment 2004; 27: 1122-1134. 10.1111/j.1365-3040.2004.01217.x

Silva AA, Vivian R, D’Antonino L. Dinâmica de herbicidas no solo. Viçosa: Universidade Federal de Viçosa; 2009.

Tomaz MA. Guia de acompanhamento de aulas de manejo de plantas invasoras. Alegre: Universidade Federal de Espírito Santo; 2011.

Vivian R, Guimarães AA, Queiroz MELR, Silva AA, Reis MRV, Santos JB. Adsorção e dessorção de trifloxysulfuron-sodium e ametryn em solos brasileiros. Planta Daninha 2007; 25(1): 97-109. 10.1590/S0100-83582007000100011
 


Submitted date:
10/28/2017

Accepted date:
02/04/2019

5f28513a0e88251d420e493c floram Articles
Links & Downloads

FLORAM

Share this page
Page Sections