Floresta e Ambiente
https://floram.org/article/doi/10.1590/2179-8087.099717
Floresta e Ambiente
Original Article Wood Science and Technology

Caatinga Tree Wood Anatomy: Perspectives on Use and Conservation

Aragão José Roberto Vieira; Claudio Sergio Lisi

Downloads: 0
Views: 144

Abstract

ABSTRACT: This work describes the anatomical analysis of the wood of four Caatinga tree species in order to determine the anatomical characteristics necessary for species segregation in functional groups, to relate them to the regional environmental conditions, as well as to infer about their management and conservation. Qualitatively, the species showed peculiar adaptations to xeric environments such as high frequency of low caliber vessels or parenchyma cells. Quantitatively, the four taxa were divided into three functional groups related to the precipitation and temperature of the Caatinga. The relationships between anatomy and the environment have shown their vulnerability to climatic variations, and have warned of the damage that can be generated by anthropogenic action. It is advisable to use the energy of the species or for use in civil construction, with the exception of Tabebuia aurea, which is appropriate for carpentry. It was verified that the anatomy of the wood has potential as a subsidy for the use, management and conservation of the studied species.

Keywords

wood anatomy, xeric environments, functional groups

References

Albuquerque UP, Araújo EL, El-Deir ACA, Lima ALA, Souto A, Bezerra BM et al. Caatinga revisited: ecology and conservation of an important seasonal dry forest. The Scientific World Journal 2012; 2012: 1-18. http://dx.doi.org/10.1100/2012/205182. PMid:22919296.

Anderegg WRL, Meinzer FC. Wood anatomy and plant hydraulics in a changing climate. In: Hacke U, editor. Functional and ecological xylem anatomy. Cham: Springer International Publishing; 2015. p. 235-53. http://dx.doi.org/10.1007/978-3-319-15783-2_9.

Andrade LA, Pereira IM, Leite UT, Barbosa MRV. Analyses of the stract of two Caatinga physionomy in São João do Dariri, Paraiba state. Cerne 2015; 11: 253-262.

Apgaua DMG, Tng DYP, Cernusak LA, Cheesman AW, Santos RM, Edwards WJ et al. Plant functional groups within a tropical forest exhibit different wood functional anatomy. Functional Ecology 2017; 31(3): 582-591. http://dx.doi.org/10.1111/1365-2435.12787.

Araújo EL, Castro CC, Albuquerque UP. Dynamics of Brazilian Caatinga–a review concerning the plants, environment and people. Funct Ecosyst Communities 2007; 1: 15-28.

Araujo KD, Dantas RT, Andrade AP, Parente HN, Alencar MLS. Caracterização do sistema de exploração da Caatinga em São João do Cariri-PB. Geogr Londrina 2010; 19: 175-189.

Araújo SMS. A região semiárida do Nordeste do Brasil: questões ambientais e possibilidades de uso sustentável dos recursos. FASETE 2011; 5: 10.

Baas P, Wheeler EA. Wood anatomy and climate change. In: Hodkinson T, Jones M, Waldren S, Parnell J, editors. Climate change, ecology and systematics. Cambridge: Cambridge University Press; 2011. p. 141-55. http://dx.doi.org/10.1017/CBO9780511974540.007.

Benites PKRM, Gouvêa AFG, Carvalho AMML, Silva FC. Caracterização anatômica das fibras de oito espécies florestais do Cerrado de Mato Grosso do Sul para a Produção de Papel. Revista Ciência da Madeira 2015;6:88-93. http://dx.doi.org/10.12953/2177-6830/rcm.v6n2p88-93.

Bomfim LFC, Costa IVG, Benveniti SMP. Diagnóstico do município de Porto da Folha. Aracaju: SEMARH; 2002.

Bonan GB. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 2008; 320(5882): 1444-1449. http://dx.doi.org/10.1126/science.1155121. PMid:18556546.

Brand MA, Lacerda SR, Oliveira J, Lopes GPRD, Casagrande NB. Storage of caatinga forest biomass to improve the quality of wood for energy. Ciência Rural 2016; 46(7): 1178-1184. http://dx.doi.org/10.1590/0103-8478cr20130959.

Brown FBH. The preparation and treatment of woods for microscopic study. Bulletin of the Torrey Botanical Club 1919; 46(4): 1-127. http://dx.doi.org/10.2307/2479494.

Brunner I, Herzog C, Dawes MA, Arend M, Sperisen C. How tree roots respond to drought. Frontiers in Plant Science 2015; 6: 1-16. http://dx.doi.org/10.3389/fpls.2015.00547. PMid:26284083.

Carlquist S. Ecological factors in wood evolution: a floristic approach. American Journal of Botany 1977; 64(7): 886-96. http://dx.doi.org/10.2307/2442382.

Carlquist S. Comparative wood anatomy: systematic, ecological, and evolutionary aspects of dicotyledon wood. 2nd ed. Berlin: Springer Berlin; 2010. Softcover version of original hardcover edition 2001.

Carvalho ECD, Souza BC, Trovão DM BM. Ecological succession in two remnants of the Caatinga in the semi-arid tropics of Brazil. Revista Brasileira de Biociências 2012; 10: 13-19.

Costa GM, Cardoso D, de Queiroz LP, Conceição AA. Variações locais na riqueza florística em duas ecorregiões de caatinga. Rodriguésia 2015; 66(3): 685-709. http://dx.doi.org/10.1590/2175-7860201566303.

Ferraz RC, Mello AA, Ferreira RA, Prata APN. Levantamento fitossociológico em área de Caatinga no monumento natural Grota do Angico, Sergipe, Brasil. Revista Caatinga 2013; 26: 89-98.

Figueirôa JM, Pareyn FGC, Araújo EL, Silva CE, Santos VF, Cutler DF et al. Effects of cutting regimes in the dry and wet season on survival and sprouting of woody species from the semi-arid caatinga of northeast Brazil. Forest Ecology and Management 2006; 229(1-3): 294-303. http://dx.doi.org/10.1016/j.foreco.2006.04.008.

Foelkel CEB, Barrichelo LEG. Relações entre características da madeira e propriedades da celulose e papel. O Pap 1975; 36: 49-53.

Gandolfi S, Leitão-Filho HF, Bezerra CLF. Floristic survey and succession of shrub and tree species of one mesophytic semideciduous forest in the Guarulhos Municipality, SP. Revista Brasileira de Biologia 1995; 55: 1-18. PMid:8729269.

Gleason SM, Westoby M, Jansen S, Choat B, Hacke UG, Pratt RB et al. Weak tradeoff between xylem safety and xylem-specific hydraulic efficiency across the world’s woody plant species. The New Phytologist 2016; 209(1): 123-136. http://dx.doi.org/10.1111/nph.13646. PMid:26378984.

Johansen DA. Plant microtechnique. USA: McGraw-Hill Book Co. Inc; 1940.

Jungles AE, Schadeck R, Krüger JEB. Atlas brasileiro de desastres naturais 1991 a 2010: volume Sergipe. Florianópolis: CEPED UFSC; 2011.

Köppen W. Climatologia. México: Fondo de Cultura Econômica; 1948.

Longui EL, Lima IL, Florsheim SMB, Bufalo A. Variação anatômica radial do lenho de açoita-cavalo (Luehea divaricata) e sua influência na densidade aparente. Rev Inst Florest 2009; 21: 181-190.

Oliveira DG, Prata APN, Souto LS, Ferreira RA. Does the edge effect influence plant community structure in a tropical dry forest? Revista Árvore 2013; 37(2): 311-320. http://dx.doi.org/10.1590/S0100-67622013000200012.

Pan Y, Birdsey RA, Fang J, Houghton R, Kauppi PE, Kurz WA et al. A large and persistent carbon sink in the World’s Forests. Science 2011; 333(6045): 988-993. http://dx.doi.org/10.1126/science.1201609. PMid:21764754.

Pineda-García F, Paz H, Meinzer FC, Angeles G. Exploiting water versus tolerating drought: water-use strategies of trees in a secondary successional tropical dry forest. Tree Physiology 2015; 36(2): 208-217. PMid:26687176.

Reich PB. The world-wide ‘fast-slow’ plant economics spectrum: a traits manifesto. Journal of Ecology 2014; 102(2): 275-301. http://dx.doi.org/10.1111/1365-2745.12211.

Roque RM, Tomazello M Fo, Dias CTS. Variações na estrutura da anatomia do lenho de árvores de Gmelina arborea Roxb.(Verbenaceae) de clima tropical seco e úmido na Costa Rica Wood anatomical variation of Gmelina arborea Roxb.(Verbenaceae) trees from dry and wet tropical climatic in Costa Rica. Scientia Forestalis 2007; 75: 65-75.

Runkel ROH. Pulp from tropical wood. Vol. 35. Hamburg-Reinbek: TAAP; 1952.

Santos MG, Oliveira MT, Figueiredo KV, Falcão HM, Arruda ECP, Almeida-Cortez J et al. Caatinga, the Brazilian dry tropical forest: can it tolerate climate changes? Theoretical and Experimental Plant Physiology 2014; 26(1): 83-99. http://dx.doi.org/10.1007/s40626-014-0008-0.

Schmidt IB, Ticktin T. When lessons from population models and local ecological knowledge coincide – effects of flower stalk harvesting in the Brazilian savanna. Biological Conservation 2012; 152: 187-195. http://dx.doi.org/10.1016/j.biocon.2012.03.018.

Secretaria do Estado Meio Ambiente e Recursos Hídricos – SEMARH. Plano de Manejo do Monumento Natural Grota do Angico. Sergipe: Secretaria do Estado Meio Ambiente e Recursos Hídricos; 2016.

Silva ACC, Prata APN, Souto LS, Mello AA. Aspectos de ecologia de paisagem e ameaças à biodiversidade em uma unidade de conservação na Caatinga, em Sergipe. Revista Árvore 2013; 37(3): 479-90.

Silva N, Lucena RFP, Lima JRF, Lima GDS, Carvalho TKN, Sousa SP Jr et al. Conhecimento e uso da vegetação nativa da caatinga em uma comunidade Rural da Paraíba, Nordeste do Brasil. Boletim do Museu de Biologia Mello Leitão 2014; 34: 5-37.

Wheeler EA, Baas P, Gasson PE. IAWA list of microscopic features for hardwood identification. IAWA Bulletin 1989; 10: 221-332.

WorldClim [online]. 2017 [cited 2017 Oct 4]. Available from: http://www.worldclim.org

Wright SJ. The future of tropical forests: future tropical forests. Annals of the New York Academy of Sciences 2010; 1195(1): 1-27. http://dx.doi.org/10.1111/j.1749-6632.2010.05455.x. PMid:20536814.

Zanne AE, Westoby M, Falster DS, Ackerly DD, Loarie SR, Arnold SEJ et al. Angiosperm wood structure: global patterns in vessel anatomy and their relation to wood density and potential conductivity. American Journal of Botany 2010; 97(2): 207-215. http://dx.doi.org/10.3732/ajb.0900178. PMid:21622380.

Zuidema PA, Baker PJ, Groenendijk P, Schippers P, van der Sleen P, Vlam M et al. Tropical forests and global change: filling knowledge gaps. Trends in Plant Science 2013; 18(8): 413-419. http://dx.doi.org/10.1016/j.tplants.2013.05.006. PMid:23809291.
 

5ce3f2330e8825d5725bc09b floram Articles
Links & Downloads

FLORAM

Share this page
Page Sections