Floresta e Ambiente
https://floram.org/article/doi/10.1590/2179-8087.071617
Floresta e Ambiente
Original Article Silviculture

Enzyme Activity, Glomalin, and Soil Organic Carbon in Agroforestry Systems

Cristiane Figueira da Silva; Marcos Gervasio Pereira; João Henrique Gaia Gomes; Marcelo Antoniol Fontes; Eliane Maria Ribeiro da Silva

Downloads: 0
Views: 104

Abstract

Abstract: This study aimed to evaluate enzyme activity, glomalin-related soil proteins (GRSP), soil chemical attributes, and total organic carbon (TOC) in two Agroforestry systems (AFS) (AFS-1 and AFS-2), in a traditional agriculture area (TA), and secondary forest (SF) area in Paraty (RJ). Soil samples (from 0 to 5 cm depth) were collected during the rainy and dry seasons. AFS improves and/or maintains soil chemical indicators based on pH increase, reduces aluminum saturation and maintains soil nutrient content (Ca, Mg and K), when compared with SF. The contribution of organic material and the biodiversity of the AFS provide the maintenance of the total organic carbon content of the soil. AFS maintain the activity of the enzymes protease, β-glucosidase, acid phosphatase, and total enzyme activity (FDA), and the production of glomalin-related soil protein at levels similar to those observed in SF, especially during the rainy season.

Keywords

protease, β-glucosidase, FDA, acid phosphatase, agroecology

References

Alef K, Nannipieri P. Protease activities. In: Alef K, Nannipieri P, editores. Methods in applied soil microbiology and biochemistry. New York: Academic Press; 1995. p. 313-315

Bird SB, Herricka JE, Wanderb MM, Wright CSF. Spatial heterogeneity of aggregate stability and soil carbon in Semi-Arid rangeland. Environmental Pollution 2002; 116(3): 445-455. 10.1016/S0269-7491(01)00222-6

Brown GG, Römbke J, Höfer H, Verhaagh M, Sautter KD, Santana DLQ. Biodiversity and function of soil animals in Brazilian agroforestry systems. In: Gama-Rodrigues AC, Barros NF, Gama-Rodrigues AF, editores. Sistemas agroflorestais: bases científicas para o desenvolvimento sustentável. Campos dos Goytacazes: Universidade Estadual do Norte Fluminense Darcy Ribeiro; 2006. p. 217-242.

Bugg TDH. Introduction to enzyme and coenzyme chemistry. 3rd ed. New Jersey: Wiley Blackwell; 2012.

Burns RG, Forest JL, Marxsen J, Sinsabaugh RL, Stromberger ME, Wallenstein MD et al. Soil enzymes in a changing environment: current knowledge and future directions. Soil Biology and Biochemistry 2013; 58: 216-234. 10.1016/j.soilbio.2012.11.009

Carter MR. Soil quality for sustainable land management: organic matter and aggregation interactions that maintain soil functions. Agronomy Journal 2002; 94(1): 38-47. 10.2134/agronj2002.3800

Cerri CC, Feller C, Balesdent J, Victoria RL, Plenecassagne A. Application du tragage isotopique natural en 13C à l’étude de la dynamique de la matière organique dans les sols. Comptes rendus des séances de l’Académie des Sciences 1985; 300(9): 423-428.

Costa PMO, Araújo MAG, Souza-Motta CM, Malosso E. Dynamics of leaf litter and soil respiration in a complex multistrata agroforestry system, Pernambuco, Brazil. Environment, Development and Sustainability 2017; 19(4): 1189-1203. 10.1007/s10668-016-9789-4

Donagemma GK, Campos DVB, Calderano SB, Teixeira WG, Viana JHM, organizadores. Manual de métodos de análise de solos. 2nd ed. Rio de Janeiro: Embrapa Solos; 2011.

Driver JD, Holben WE, Rillig MC. Characterization of glomalin as a hyphal wall component of arbuscular mycorrhizal fungi. Soil Biology and Biochemistry 2005; 37(1): 101-106. 10.1016/j.soilbio.2004.06.011

Fernandes MF, Anjos JL, Sobral LF, Fernandes RPM, Araújo AS. Efeito da saturação por bases sobre a atividade de fosfatases em um solo de tabuleiro costeiro cultivado com citros. I. Correlações entre a atividade enzimática e as diferentes características do solo alteradas pela calagem. Revista Brasileira de Ciência do Solo 1998; 22(3): 395-401. 10.1590/S0100-06831998000300004

Gama-Rodrigues AC, Gama-Rodrigues EF, Barros NF. Balanço de carbono e nutrientes em plantio puro e misto de espécies florestais nativas no sudeste da Bahia. Revista Brasileira de Ciência do Solo 2008; 32(3): 1165-1179. 10.1590/S0100-06832008000300025

Geisseler D, Horwath RW. Regulation of extracellular protease activity in soil in response to different sources and concentrations of nitrogen and carbon. Soil Biology and Biochemistry 2008; 40(12): 3040-3048. 10.1016/j.soilbio.2008.09.001

Guo H, He XL, Li YP. Spatial distribution of arbuscular mycorrhiza and glomalin in the rhizosphere of Caragana korshinskii Kom. in the Otindag sandy land, China. African Journal of Microbiology Research 2012; 6(28): 5745-5753. 10.5897/AJMR11.1560

Harrison AF. Relations between intensity of phosphatase activity and physico-chemical properties in woodland soils. Soil Biology and Biochemistry 1983; 15(1): 93-99. 10.1016/0038-0717(83)90124-4

Islas AJT, Guijarro KH, Eyherabide M, Rozas HRS, Echeverría HE, Covacevich F. Can soil properties and agricultural land use affect arbuscular mycorrhizal fungal communities indigenous from the Argentinean Pampa soil. Applied Soil Ecology 2016; 101: 47-56. 10.1016/j.apsoil.2016.01.005

Iwata BF, Leite LFC, Araújo ASF, Nunes APL, Gehring C, Campos LP. Sistemas agroflorestais e seus efeitos sobre os atributos químicos em Argissolo Vermelho-Amarelo do Cerrado piauiense. Revista Brasileira de Engenharia Agrícola e Ambiental 2012; 16(7): 730-738.

Koide RT, Peoples MS. Behaviour of bradford-reactive substances is consistent with predictions for glomalin. Applied Soil Ecology 2013; 63(1): 8-14. 10.1016/j.apsoil.2012.09.015

Köppen W. Das geographische system der klimate. Handbuch der klimatologie. Berlim: Borhtraeger; 1938.

Li SM, Li L, Zhang FS, Tang C. Acid phosphatase role in chickpea/maize intercropping. Annals of Botany 2004; 94(2): 297-303. 10.1093/aob/mch140

Lima SS, Aquino AM, Leite LFC, Velásquez E, Lavelle P. Relação entre macrofauna edáfica e atributos químicos do solo em diferentes agroecossistemas. Pesquisa Agropecuária Brasileira 2010; 45(3): 322-331. 10.1590/S0100-204X2010000300013

Louzada MAP, Quintela MFS, Penna LPS. Estudo comparativo da produção de serapilheira em áreas de Mata Atlântica: a floresta secundária “antiga” e uma floresta secundária (capoeira). Oecologia Brasiliensis 1995; 1: 61-74.

Lovelock CE, Wright SF, Nichols KA. Using glomalin as an indicator for arbuscular mycorrhizal hyphal growth: An example from a tropical rain forest soil. Soil Biology and Biochemistry 2004; 36(6): 1009-1012. 10.1016/j.soilbio.2004.02.010

Machado DL, Pereira MG, Correia MEF, Diniz ARD, Santos LL, Menezes CEG. Ciclagem de nutrientes em diferentes estágios sucessionais da Mata Atlântica na bacia do rio Paraíba do Sul, RJ. Bioscience Journal 2015; 31(4): 1222-1237. 10.14393/BJ-v31n1a2015-23092

Matoso SCG, Silva AN, Fiorelli-Pereira EC, Colleta QP, Maia E. Frações de carbono e nitrogênio de um Latossolo Vermelho-Amarelo distrófico sob diferentes usos na Amazônia brasileira. Acta Amazonica 2012; 42(2): 231-240. 10.1590/S0044-59672012000200008

Oliveira JRG, Souza RG, Silva FSB, Mendes ASM, Yano-Melo AM. O papel da comunidade de fungos micorrízicos arbusculares (FMA) autóctones no desenvolvimento de espécies vegetais nativas em área de dunas de restinga revegetadas no litoral do Estado da Paraíba. Revista Brasileira de Botânica 2009; 32(4): 663-670. 10.1590/s0100-84042009000400005

Oliveira NL, Jacq C, Dolci M, Delahaye F. Desenvolvimento sustentável e sistemas agroflorestais na Amazônia mato-grossense. Confins 2010; 10: 1-21. 10.4000/confins.6778

Pavinato PC, Rosolem CA. Disponibilidade de nutrientes no solo: decomposição e liberação de compostos orgânicos de resíduos vegetais. Revista Brasileira de Ciência do Solo 2008; 32(3): 911-920. 10.1590/S0100-06832008000300001

Phalan B, Balmford A, Green RE, Scharlemann JPW. Minimising the harm to biodiversity of producing more food globally. Food Policy 2011a; 36(1): S62-S71. 10.1016/j.foodpol.2010.11.008

Phalan B, Onial M, Balmford A, Green RE. Reconciling food production and biodiversity conservation: land sharing and land sparing compared. Science 2011b; 333(6047): 1289-1291. 10.1126/science.1208742

Portela RCQ, Santos FAM. Produção e espessura da serapilheira na borda e interior de fragmentos florestais de Mata Atlântica de diferentes tamanhos. Revista Brasileira de Botânica 2007; 30(2): 271-280. 10.1590/S0100-84042007000200011

Portugal AF, Jucksch I, Schaefer CEGR, Wendling B. Determinação de estoques totais de carbono e nitrogênio e suas frações em sistemas agrícolas implantados em Argissolo Vermelho-Amarelo. Revista Brasileira de Ciência do Solo 2008; 32(5): 2091-2100. 10.1590/S0100-06832008000500030

Radam Brasil. Rio de Janeiro: IBGE; 1983. (Levantamento de recursos naturais, 32).780 p.

Rillig MC. Arbuscular mycorrhizae, glomalin, and soil aggregation. Canadian Journal of Soil Science 2004; 84(4): 355-363. 10.4141/S04-003

Rojo MJ, Carcedo SG, Mateos MP. Distribution and characterization of phosphatase and organic phosphorus in soil fractions. Soil Biology and Biochemistry 1990; 22(2): 169-174. 10.1016/0038-0717(90)90082-B

Salcedo IH, Sampaio EVSB. Matéria orgânica do solo no bioma caatinga. In: Santos GS, Silva LS, Canellas LP, Camargo FAO, editores. Fundamentos da matéria orgânica do solo: Ecossistemas tropicais e subtropicais. Porto Alegre: Metrópole; 2008. p. 419-441.

Sanchez PA. Properties and management of soils in the tropics. Soil Science 1977; 124(3): 187. 10.1097/00010694-197709000-00012

Schnurer J, Rosswall T. Fluorescein diacetate hydrolysis as a measure of total microbial activity in soil and litter. Applied and Environmental Microbiology 1982; 43(6): 1256-1261.

Silva CF, Pereira MG, Miguel DL, Feitora JCF, Loss A, Menezes CEG et al. Carbono orgânico total, biomassa microbiana e atividade enzimática do solo de áreas agrícolas, florestais e pastagem no médio vale do Paraíba do Sul (RJ). Revista Brasileira de Ciência do Solo 2012; 36(6): 1680-1689. 10.1590/S0100-06832012000600002

Silva CF, Pereira MG, Santos VL, Miguel DL, Silva EMR. Fungos micorrízicos arbusculares: composição, comprimento de micélio extrarradicular e glomalina em áreas de Mata Atlântica, Rio de Janeiro. Ciência Florestal 2016; 26(2): 419-433. 10.5902/1980509822743

Singh PK, Singh M, Tripathi BN. Glomalin: an arbuscular mycorrhizal fungal protein. Protoplasma 2013; 250(3): 663-669. 10.1007/s00709-012-0453-z

Souza HN, Goedea RGM, Brussaarda L, Cardoso IM, Duarte EMG, Fernandes RBA et al. Protective shade, tree diversity and soil properties in coffee agroforestry systems in the Atlantic Rainforest biome. Agriculture Ecosystems Environmental 2012; 146(1): 179-196. 10.1016/j.agee.2011.11.007

Souza MCS, Piña-Rodrigues FCM, Casagrande JC, Silva SF, Scoriza RN. Funcionalidade ecológica de sistemas agroflorestais biodiversos: uso da serapilheira como indicador da recuperação de áreas de preservação permanente. Floresta 2016; 46(1): 75-82. 10.5380/rf.v46i1.34991

Souza MCS, Piña-Rodrigues FCM. Desenvolvimento de espécies arbóreas em sistemas agroflorestais para recuperação de áreas degradadas na floresta ombrófila densa, Paraty, RJ. Revista Árvore 2013; 37(1): 89-98. 10.1590/S0100-67622013000100010

Schindler FV, Mercer ER, Rice JA. Chemical characteristics of glomalin-related soil protein (GRSP) extracted from soils of varying organic matter content. Soil Biology and Biochemistry 2007; 39(1): 320-329. 10.1016/j.soilbio.2006.08.017

Stieven AC, Oliveira DA, Santos JO, Wruck FJ, Campos DTS. Impacts of integrated crop-livestock-forest on microbiological indicators of soil. Agrária - Revista Brasileira de Ciências Agrárias 2014; 9(1): 53-58. 10.5039/agraria.v9i1a3525

Tabatabai MA. Soil enzymes. In: Weaver RW, editor. Methods of soil analysis: microbiological and biochemical properties. Madison: Soil Science Society of America; 1994. p. 775-833.

Tavares PD, Silva, CF, Pereira MG, Freo VA, Bieluczyk W, Silva EMR. Soil quality under agroforestry systems and traditional agriculture in the Atlantic Forest biome. Revista Caatinga 2018; 31(4): 954-962. 10.1590/1983-21252018v31n418rc

Tian Y, Cao F, Wang G. Soil microbiological properties and enzyme activity in Ginkgo-tea agroforestry compared with monoculture. Agroforest Systems 2013; 87(5): 1201-1210. 10.1007/s10457-013-9630-0

Vallejo VE, Roldan F, Dick RP. Soil enzymatic activities and microbial biomass in an integrated agroforestry chronosequence compared to monoculture and a native forest of Colombia. Biology and Fertility of Soils 2010; 46(6): 577-587. 10.1007/s00374-010-0466-8

Vidican R, Stoian V. Enzyme activity - indicator of soil biological dynamics. ProEnvironment 2015; 8(24): 553-558.

Wilson GWT, Rice CW, Rillig MC, Springer A, Hartnett DC. Soil aggregation and carbon sequestration are tightly correlated with the abundance of arbuscular mycorrhizal fungi: results from long-term field experiments. Ecology Letters 2009; 12(5): 452-461. 10.1111/j.1461-0248.2009.01303.x

Wright SF, Franke-Snyder M, Morton JB, Upadhyaya A. Time-course study and partial characterization of a protein on hyphae of arbuscular mycorrhizal fungi during active colonization of roots. Plant Soil 1996; 181(2): 193-203. 10.1007/BF00012053

Wright SF, Upadhyaya A. A survey of soils for aggregate stability and glomalin, a glycoprotein produced by hyphae of arbuscular mycorrhizal fungi. Plant and Soil 1998; 198(1): 97-107. 10.1023/A:1004347701584

Wu QS, He XH, Zou YN, He KP, Sun YH, Cao MQ. Spatial distribution of glomalin-related soil protein and its relationships with root mycorrhization, soil aggregates, carbohydrates, activity of protease and β-glucosidase in the rhizosphere of Citrus unshiu. Soil Biology and Biochemistry 2012; 45: 181-183. 10.1016/j.soilbio.2011.10.002

Yeomans JC, Bremner JM. A rapid and precise method for routine determination of organic carbon in soil. Comm. Soil Science Plant Analysis 1988; 19(13): 1467-1476. 10.1080/00103628809368027
 


Submitted date:
06/23/2017

Accepted date:
03/10/2019

5f2850a30e8825b53f0e493c floram Articles
Links & Downloads

FLORAM

Share this page
Page Sections