Floresta e Ambiente
Floresta e Ambiente
Original Article Silviculture

Fertilization and Irrigation Affect Soil Carbon under Eucalyptus Plantation in the Cerrado

Ricardo Cardoso Fialho; Rafael da Silva Teixeira; Ana Paula Mendes Teixeira; Thalles Guimarães Reis; Ivo Ribeiro da Silva

Downloads: 1
Views: 30


ABSTRACT: This study aimed: i) to evaluate the influence of fertilization and irrigation management on eucalyptus plantations for soil carbon (C) dynamics; ii) to evaluate the impact of fertilization and irrigation management on eucalyptus plantations in the C allocation in depth compared to the Cerrado biome. This study was carried out in an eucalyptus plantation at the end of the third rotation (7 years), which received different fertilizations and irrigations, and a Cerrado area was used as reference. Soil samples were collected in trenches and the gases (CO2 and CH4) on the surface. The total organic carbon (TOC) is more influenced by the availability of water than nutrients. Soils under eucalyptus stands are more efficient at C stocks in depth than the Cerrado and act as a liquid drain of CO2 and CH4 from the atmosphere.


CO2, CH4, carbon management index, planted forests


Bernal B, McKinley DC, Hungate BA, White PM, Mozdzer TJ, Megonigal JP. Limits to soil carbon stability; deep, ancient soil carbon decomposition stimulated by new labile organic inputs. Soil Biology & Biochemistry 2016; 98: 85-94. 10.1016/j.soilbio.2016.04.007

Blair G, Lefroy R, Lisle L. Soil carbon fractions based on their degree of oxidation, and the development of a carbon management index for agricultural systems. Australian Journal of Agricultural Research 1995; 46(7): 1450-1459. 10.1071/AR9951459

Dijkstra FA, Hobbie SE, Knops JMH, Reich PB. Nitrogen deposition and plant species interact to influence soil carbon stabilization Ecology Letters 2004; 7(12): 1192-1198. 10.1111/j.1461-0248.2004.00679.x

Ellert BH, Bettan JR. Calculation of organic matter and nutrients stored in soils under contrasting management regimes. Canadian Journal of Soil Science 1995; 75(4): 529-538. 10.4141/cjss95-075

Fialho RC, Zinn YL. Changes in soil organic carbon under Eucalyptus plantations in Brazil: a comparative analysis. Land Degradation & Development 2014; 25(5): 428-437. 10.1002/ldr.2158

Fontaine S, Mariotti A, Abbadie L. The priming effect of organic matter: a question of microbial competition? Soil Biology and Biochemistry 2003; 35(6): 837-843. 10.1016/S0038-0717(03)00123-8

Forrester DI, Bauhus J, Cowie AL. Carbon allocation in a mixed-species plantation of Eucalyptus globulus and Acacia mearnsii. Forest Ecology and Management 2006; 233(2-3): 275-284. 10.1016/j.foreco.2006.05.018

Gatto A, Barros NF, Novais RF, Silva IR, Leite HG, Leite FP et al. Estoques de carbono no solo e na biomassa em plantações de eucalipto. Revista Brasileira de Ciência do Solo 2010; 34(4): 1069-1079. 10.1590/S0100-06832010000400007

Gatto A, Barros NF, Novais RF, Silva IR, Leite HG, Villani EMA. Estoque de carbono na biomassa de plantações de eucalipto na região Centro-leste do estado de Minas Gerais. Revista Árvore 2011; 35(4): 895-905. 10.1590/S0100-67622011000500015

Gonçalves MR, Passos CAM. Crescimento de cinco espécies de eucalipto submetidas a déficit hídrico em dois níveis de fósforo. Ciência Florestal 2000; 10(2): 145-161. 10.5902/19805098488

Hansen MC, Potapov PV, Moore R, Hancher M, Turubanova SA, Tyukavina A et al. High-resolution global maps of forest cover change. Science 2013; 342(6160): 850-853. 10.1126/science.1244693

Instituto Nacional de Pesquisas Espaciais - Inpe. Taxas anuais do desmatamento: 1988 até 2014. 2014 [cited 2015 Apr. 1]. Available from: Available from: https://bit.ly/2sdFkw2

Intergovernmental Panel on Climate Change - IPCC. Fifth assessment report. Cambridge: Cambridge University Press; 2014.

Jacinthe PA, Lal R. Labile carbon and methane uptake as affected by tillage intensity in a Mollisol. Soil and Tillage Research 2005; 80(1-2): 35-45. 10.1016/j.still.2004.02.018

Lai Z, Zhang Y, Liu J, Wu B, Qin S, Fa K. Fine-root distribution, production, decomposition, and effect on soil organic carbon of three revegetation shrub species in northwest China. Forest Ecology and Management 2016; 359: 381-388. 10.1016/j.foreco.2015.04.025

Lamparter A, Bachmann J, Goebel MO, Woche SK. Carbon mineralization in soil: impact of wetting-drying, aggregation and water repellency. Geoderma 2009; 150(3-4): 324-333. 10.1016/j.geoderma.2009.02.014

Lemer J, Roger P. Production, oxidation, emission and consumption of methane by soils: a review. European Journal of Soil Biology 2001; 37(1): 25-50. 10.1016/S1164-5563(01)01067-6

Li S, Han S, Zhang Y. Foliar decomposition in a broadleaf-mixed Korean pine (Pinus koraiensis Sieb. Et Zucc) plantation forest: the impact of initial litter quality and the decomposition of three kinds of organic matter fraction on mass loss and nutrient release rates. Plant and Soil 2007; 295(1-2): 151-167. 10.1007/s11104-007-9272-y

Nicoloso RS, Lovato T, Amado TJC, Bayer C, Lanzanova ME. Balanço do carbono orgânico no solo sob integração lavoura-pecuária no sul do Brasil. Revista Brasileira da Ciência do Solo 2008; 32(4): 2425-2433. 10.1590/S0100-06832008000600020

Portugal AF, Jucksch I, Schaefer CEGR, Wendling B. Determinação de estoques totais de carbono e nitrogênio e suas frações em sistemas agrícolas implantados em argissolo vermelho-amarelo. Revista Brasileira de Ciência do Solo 2008; 32(5): 2091-2100. 10.1590/S0100-06832008000500030

Rasse DP, Rumpel C, Dignac MF. Is soil carbon mostly root carbon? Mechanisms for a specific stabilisation. Plant and Soil 2005; 269(1-2): 341-356. 10.1007/s11104-004-0907-y

Reis GG, Reis mgF, Fontan ICI, Monte MA, Gomes NA, Oliveira CHR. Crescimento de raízes e da parte aérea de clones de híbridos de Eucalyptus grandis × Eucalyptus urophylla e de Eucalyptus camaldulensis × Eucalyptus spp submetidos a dois regimes de irrigação no campo. Revista Árvore 2006; 30(6): 921-931. 10.1590/S0100-67622006000600007

Reis MGF, Kimmins JP, Resende GC, Barros NF. Acúmulo de biomassa em uma sequência de idade de Eucalyptus grandis plantado no Cerrado em duas áreas com diferentes produtividades. Revista Árvore 1985; 9(2): 149-162.

Saggar S, Tate KR, Giltrap DL, Singh J. Soil-atmosphere exchange of nitrous oxide and methane in New Zealand terrestrial ecosystems and their mitigation options: a review. Plant and Soil 2008; 309(1-2): 25-42. 10.1007/s11104-007-9421-3

Sant’Ana JAV, Coelho EF, Faria MA, Silva EL, Donato SLR. Distribuição de raízes de bananeira “prata-anã” no segundo ciclo de produção sob três sistemas de irrigação. Revista Brasileira de Fruticultura 2012; 34(1): 124-133. 10.1590/S0100-29452012000100018

Schmidt MWY, Torn MS, Abiven S, Dittmar T, Guggenberger G, Janssens IA et al. Persistence of soil organic matter as an ecosystem property. Nature 2011; 478: 49-56. 10.1038/nature10386

Shang C, Tiessen H. Organic matter lability in tropical Oxisol: evidence from shifting cultivation, chemical oxidation, particle size, and magnetic fractionations. Soil Science 1997; 162(11): 795-807.

Smith KA, Conen F. Measurement of trace gases, I: gas analysis, chamber methods, and related procedures. In: Smith KA, Cresser MS, editors. Soil and environmental analysis: modern instrumental techniques. 3rd ed. New York: CRC Press; 2004. p. 433-476.

Stape JL, Binkley D, Ryan MG. Eucalyptus production and the supply, use and efficiency of use of water, light and nitrogen across a geographic gradient in Brazil. Forest Ecology and Management 2004; 193(1-2): 17-31. 10.1016/j.foreco.2004.01.020

Stape JL, Binkley D, Ryanc MG, Fonseca S, Loos RA, Takahashi EN et al. The Brazil Eucalyptus Potential Productivity Project: influence of water, nutrients and stand uniformity on wood production. Forest Ecology and Management 2010; 259(9): 1684-1694. 10.1016/j.foreco.2010.01.012

Turner J, Lambert MJ, Johnson DW. Experience with patterns of change in soil carbon resulting from forest plantation establishment in eastern Australia. Forest Ecology and Management 2005; 220(1-2): 259-269. 10.1016/j.foreco.2005.08.025

Ussiri AN, Lal R. Long-term tillage effects on soil carbon storage and carbon dioxide emissions in continuous corn cropping system from an alfisol in Ohio. Soil Tillage Research 2009; 104(1): 39-47. 10.1016/j.still.2008.11.008

Vishwakarma K, Sharma S, Kumar N, Upadhyay N, Devi S, Tiwari A. Contribution of microbial inoculants to soil carbon sequestration and sustainable agriculture. In: Singh DP, Singh HB, Prabha R, editors. Microbial inoculants in sustainable agricultural productivity: functional applications. New Delhi: Springer; 2016. v. 2. p. 101-113. 10.1007/978-81-322-2644-4_7

Zinn YL, Lal R, Resck DVS. Texture and organic carbon relations described by a profile pedotransfer function for Brazilian Cerrado soils. Geoderma 2005; 127(1-2): 168-173. 10.1016/j.geoderma.2005.02.010

Zinn YL, Lal R, Resck DVS. Eucalypt plantation effects on organic carbon and aggregation of three different-textured soils in Brazil. Soil Research 2011; 49(7): 614-624. 10.1071/SR11264

Zinn YL, Resck DVS, Silva JE. Soil organic carbon as affected by afforestation with Eucalyptus and Pinus in the Cerrado region of Brazil. Forest Ecology and Management 2002; 166(1-3): 285-294. 10.1016/S0378-1127(01)00682-X

5d5ff5d40e8825a758f3bb07 floram Articles
Links & Downloads


Share this page
Page Sections