Floresta e Ambiente
https://floram.org/article/doi/10.1590/2179-8087.053617
Floresta e Ambiente
Original Article Conservation of Nature

Soil Microbial Biomass Across a Gradient of Preserved Native Cerrado

Nilza Silva Carvalho; Sandra Mara Barbosa Rocha; Vilma Maria dos Santos; Fabio Fernando de Araujo; Ademir Sérgio de Araújo

Downloads: 1
Views: 1481

Abstract

ABSTRACT: The different physiognomies and soil conditions across the Cerrado gradient may influence soil microbial biomass. The present study evaluated the soil microbial biomass and enzyme activity across a preserved Cerrado gradient and correlated these with environmental conditions. The site, sampling period and their interaction influenced soil microbial biomass and activity. Soil conditions, i.e., chemical and microclimatic properties, varied across the Cerrado gradient and influenced soil microbial biomass and activity. The highest and lowest values for microbial biomass and enzyme activity were found in Cerradao and Campo graminoide, respectively, during both seasons. Multivariate analysis showed that the sites were clearly separated into different groups, indicating that distinct physiognomies and environmental conditions influenced soil microbial biomass and enzyme activities.

Keywords

soil properties, tropical savanna, seasonal variation

References

Alef K. Estimation of soil respiration. In: Alef K, Nannipieri P, editors. Methods in soil microbiology and biochemistry. New York: Academic Press; 1995.

Allison SD, Treseder KK. Warming and drying suppress microbial activity and carbon cycling in boreal forest soils. Gl Ch Biol 2008; 14(12): 2898-2909. http://dx.doi.org/10.1111/j.1365-2486.2008.01716.x.

Amaral AG, Pereira FFO, Munhoz CBR. Fitossociologia de uma área de cerrado rupestre na fazenda sucupira, Brasília - DF. Cerne 2006; 12: 350-359.

Araujo JF, Castro AP, Costa MMC, Togawa RC, Pappas GJ Jr, Quirino BF et al. Characterization of soil bacterial assemblies in brazilian savanna-like vegetation reveals acidobacteria dominance. Microbial Ecology 2012; 64(3): 760-770. http://dx.doi.org/10.1007/s00248-012-0057-3. PMid:22570118.

Bastida F, Barberá GG, García C, Hernández T. Influence of orientation, vegetation and season on soil microbial and biochemical characteristics under semiarid conditions. Applied Soil Ecology 2008; 38(1): 62-70. http://dx.doi.org/10.1016/j.apsoil.2007.09.002.

Bending GD, Turner MK, Jones JE. Interactions between crop residue and soil organic matter quality and the functional diversity of soil microbial communities. Soil Biology & Biochemistry 2002; 34(8): 1073-1082. http://dx.doi.org/10.1016/S0038-0717(02)00040-8.

Berg G, Smalla K. Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiology Ecology 2009; 68(1): 1-13. http://dx.doi.org/10.1111/j.1574-6941.2009.00654.x. PMid:19243436.

Bremner JM. Nitrogen total. In: Sparks DL, editor. Methods of soil analysis: part 3. Madison: America Society of Agronomy; 1996.

Burns RG, De Forest JL, Marxsen J, Sinsabaugh RL, Stromberger ME, Wallenstein MD et al. Soil enzymes in a changing environment: current knowledge and future directions. Soil Biology & Biochemistry 2013; 58: 216-234. http://dx.doi.org/10.1016/j.soilbio.2012.11.009.

Carneiro MAC, Souza ED, Paulino HB, Sales LEO, Vilela LAV. Attributes quality indicators in cerrado soils surrounding the Parque Nacional das Emas, state of Goiás, Brazil. Bioscience Journal 2013; 29: 1857-1868.

Carvalho PCF, Anghinoni I, Moraes A, Souza ED, Sulc RM, Lang CR et al. Managing grazing animals to achieve nutrient cycling and soil improvement in no-till integrated systems. Nutrient Cycling in Agroecosystems 2010; 88(2): 259-273. http://dx.doi.org/10.1007/s10705-010-9360-x.

Casida LE Jr, Klein DA, Santoro T. Soil dehydrogenase activity. Soil Science 1964; 98(6): 371-376. http://dx.doi.org/10.1097/00010694-196412000-00004.

Coutinho LM. O conceito de Cerrado. Revista Brasileira de Botânica 1978; 1: 17-23.

Eaton W, Chassot O. Characterization of soil ecosystems in Costa Rica using microbial community metrics. Tropical Ecology 2012; 53: 25-36.

Eivazi F, Tabatabai MA. Glucosidases and galactosidases in soils. Soil Biology & Biochemistry 1988; 20(5): 601-606. http://dx.doi.org/10.1016/0038-0717(88)90141-1.

Emmerling C, Liebner C, Haubold-Rosar M, Katzur J, Schröder D. Impact of application of organic waste materials on microbial and enzyme activities of mine soils in the Lusatian coal mining region. Plant and Soil 2000; 220(1/2): 129-138. http://dx.doi.org/10.1023/A:1004784525209.

Empresa Brasileira de Pesquisa Agropecuária – EMBRAPA. Manual de análises químicas de solos, plantas e fertilizantes. Brasilia: Embrapa; 1999.

Fernandes MM, Carvalho MGC, Araujo JMR, Melo FR, Silva CA, Sampaio FMT et al. Matéria orgânica e biomassa microbiana em plantios de eucalipto no Cerrado piauiense. Floresta e Ambiente 2012; 19(4): 453-459. http://dx.doi.org/10.4322/floram.2012.061.

Gama-Rodrigues EF, Gama-Rodrigues AC. Biomassa microbiana e ciclagem de nutrientes. In: Santos GA, Silva LS, Canellas LP editors. Fundamentos da matéria orgânica do solo ecossistemas tropicais e subtropicais. Porto Alegre: Metrópole; 2008.

Kandeler E, Gerber H. Short-term assay of soil urease activity sing colorimetric determination of ammonium. Biology and Fertility of Soils 1988; 6(1): 68-72. http://dx.doi.org/10.1007/BF00257924.

Kruskal JB. Multidimensional scaling by optimizing goodness-of-fit to a nonmetric hypothesis. Psychometrika 1964; 29(1): 1-28. http://dx.doi.org/10.1007/BF02289565.

Lamb EG, Kennedy N, Siciliano SD. Effects of plant species richness and evenness on soil microbial community diversity and function. Plant and Soil 2011; 338(1-2): 483-495. http://dx.doi.org/10.1007/s11104-010-0560-6.

Leite LFC, Mendonça ES, Machado PLOA, Matos ES. Total C and N storage and organic C pools of a Red Yellow Podzolic under conventional and no tillage at the Atlantic Forest Zone, Southeastern Brazil. Australian Journal of Soil Research 2003; 41(4): 717-730. http://dx.doi.org/10.1071/SR02037.

Lino IAN, Santos VM, Escobar IEC, Silva DCA, Araújo ASF, Maia LC. Soil enzymatic activity in Eucalyptus grandis plantations of different ages. Land Degradation & Development 2016; 27(1): 77-82. http://dx.doi.org/10.1002/ldr.2454.

Lucena IC, Amorim RSS, Lobo FA, Baldoni RN, Matos DMS. Spatial heterogeneity of soils of the Cerrado-Pantanal ecotone. Revista Ciência Agronômica 2014; 45(4): 673-682. http://dx.doi.org/10.1590/S1806-66902014000400005.

Malchair S, De Boeck HJ, Lemmens CMHM, Merckx R, Nijs I, Ceulemans R et al. Do climate warming and plant species richness affect potential nitrification, basal respiration and ammonia-oxidizing bacteria in experimental grasslands? Soil Biology & Biochemistry 2010; 42(11): 1944-1951. http://dx.doi.org/10.1016/j.soilbio.2010.07.006.

Marinari S, Mancinelli R, Campiglia E, Grego S. Chemical and biological indicators of soil quality in organic and conventional farming systems in Central Italy. Ecological Indicators 2006; 6(4): 701-711. http://dx.doi.org/10.1016/j.ecolind.2005.08.029.

Mendes IC, Fernandes MF, Chaer GM, Reis FB Jr. Biological functioning of Brazilian Cerrado soils under different vegetation types. Plant and Soil 2012; 359(1-2): 183-195. http://dx.doi.org/10.1007/s11104-012-1195-6.

Mganga KZ, Razavi BS, Kuzyakov Y. Microbial and enzymes response to nutrient additions in soils of Mt. Kilimanjaro region depending on land use. European Journal of Soil Biology 2015; 69: 33-40. http://dx.doi.org/10.1016/j.ejsobi.2015.05.001.

Nardoto GB, Bustamante MMC. Effects of fire on soil nitrogen dynamics and microbial biomass in savannas of Central Brazil. Pesquisa Agropecuária Brasileira 2003; 38(8): 955-962. http://dx.doi.org/10.1590/S0100-204X2003000800008.

Nsabimana D, Haynes RJ, Wallis FM. Size, activity and catabolic diversity of the soil microbial biomass as affected by land use. Applied and Environmental Microbiology 2004; 26: 81-92.

Ribeiro J, Colli GR, Caldwell JP, Soares AMVM. An integrated trait-based framework to predict extinction risk and guide conservation planning in biodiversity hotspots. Biological Conservation 2016; 195: 214-223. http://dx.doi.org/10.1016/j.biocon.2015.12.042.

Ribeiro SC, Fehrmann L, Soares CPB, Jacovine LAG, Kleinn L, Gaspar RO. Above- and belowground biomass in a Brazilian Cerrado. Forest Ecology and Management 2011; 262(3): 491-499. http://dx.doi.org/10.1016/j.foreco.2011.04.017.

Schnürer J, Rosswall T. Fluorescein diacetate hydrolysis as a measure of total microbial activity in soil and litter. Applied and Environmental Microbiology 1982; 43(6): 1256-1261. PMid:16346026.

Tabatabai MA, Bremner JM. Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biology & Biochemistry 1969; 1(4): 301-307. http://dx.doi.org/10.1016/0038-0717(69)90012-1.

Tabatabai MA, Bremner JM. Arylsulphatase activity in soils. Soil Science Society of America Journal 1970; 34(2): 225-229. http://dx.doi.org/10.2136/sssaj1970.03615995003400020016x.

Tabuchi H, Kato K, Nioh I. Season and soil management affect soil microbial communities estimated using phospholipid fatty acid analysis in a continuous cabbage (Brassica oleracea var. capitata) cropping system. Soil Science and Plant Nutrition 2008; 54(3): 369-378. http://dx.doi.org/10.1111/j.1747-0765.2008.00242.x.

Vance ED, Brookes PC, Jenkinson DS. An extraction method for measuring soil microbial biomass. Soil Biology & Biochemistry 1987; 19(6): 703-707. http://dx.doi.org/10.1016/0038-0717(87)90052-6.

Wallenstein MD, McMahon S, Schimel J. Bacterial and fungal community structure in Arctic tundra tussock and shrub soils. FEMS Microbiology Ecology 2007; 59(2): 428-435. http://dx.doi.org/10.1111/j.1574-6941.2006.00260.x. PMid:17313585.

Yeomans JC, Bremner JM. A rapid and precise method for routine determimation of organic carbon in soil. Soil Science and Plant Analysis 1998; 19: 1467-1476.
 

5b1972ac0e882506070cfe01 floram Articles
Links & Downloads

FLORAM

Share this page
Page Sections