Floresta e Ambiente
https://floram.org/article/doi/10.1590/2179-8087.052017
Floresta e Ambiente
Original Article Conservation of Nature

Gas Exchange in Caryocar B rasiliense Cambess Seedlings in Water Deficit Conditions

Silvana de Paula Quintão Scalon; Flávia Mitsuko Kodama; Daiane Mugnol Dresch; Zefa Valdivina Pereira; Rosilda Mara Mussury; Lourenço Quintão Scalon

Downloads: 0
Views: 149

Abstract

Abstract: In this study, we assessed the gas exchange in Caryocar brasiliense seedlings in water deficit conditions and their capacity to recover after rehydration. We assessed plant photosynthetic rates, internal carbon concentrations, stomatal conductance, transpiration rates, water-use efficiency, instantaneous carboxylation efficiency, chlorophyll index, and photosystem II quantum efficiency. All gas exchange parameters were reduced after the suspension of irrigation. Seedling photosynthetic rates approached zero after 12 days. The equilibrium was reestablished in all variables 11 days after re-initiating irrigation, with the exception of internal CO2 concentration and stomatal conductance. Exposure of seedlings to water stress resulted in drastically reduced photosynthetic processes. This reduction occurred due to the limitation of stomatal conductance and low rubisco carboxylation efficiency but not to irreversible damage photosystem II. All of these parameters demonstrated recuperation with rehydration, but only the photosynthetic rates reached initial control values.

Keywords

hydric stress, native fruit, Pequi, Caryocaceae

References

Almeida SP, Silva JA. Piqui e buriti: importância alimentar para a população dos cerrados. Planaltina: Embrapa-CPAC; 1994. (Documentos, 54).

Bento LF, Scalon SPQ, Dresch DM, Pereira ZV. Potential for recovery of Campomanesia xanthocarpa Mart. ex O. Berg seedlings from water deficit. African Journal of Agricultural Research 2016; 11(30): 2775-2785. 10.5897/AJAR2016.11231

Björkman O, Demming B. Photon yield of O2 evolution and chlorophyll fluorescence chracteristics at 77 k among vascular plants of diverse origins. Planta 1987; 170(4): 61-66. 10.1007/BF00402983

Bolhar-Nordenkampf HR, Lon SP, Baker NR, Oquist G, Schreider U, Lechner EG. Chlorophyll fluorescence as a probe of the photosynthetic competence of leaves in the field: a review of current instrumentation. Functional Ecology 1989; 3(4): 497-514. 10.2307/2389624

Camejo D, Rodríguez P, Morales MA, Dell’Amico JM, Torrecillas A, Alarcón JJ. High temperature effects on photosynthetic activity of two tomato cultivars with different heat susceptibility. Journal of Plant Physiology 2005; 162(3): 281-289. 10.1016/j.jplph.2004.07.014

Chartzoulakis K, Patakas A, Kofidis G, Bosabalidis A, Nastou A. Water stress affects leaf anatomy, gas exchange, water relations and growth of two avocado cultivars. Scientia Horticulture 2002; 95(1-2): 39-50. 10.1016/S0304-4238(02)00016-X

Coscolin RBS, Broetto F, Marchese JA, Campohermoso MC, Paladini MV. Effects of hydric deficiency on gas exchange parameters and metabolism of Eucalyptus grandis clones. Brazilian Journal of Plant Physiology 2011; 23(4): 255-262. 10.1590/S1677-04202011000400002

Dias DP, Marenco RA. Fotossíntese e fotoinibição em mogno e acariquara em função da luminosidade e temperatura foliar. Pesquisa Agropecuária Brasileira 2007; 42(3): 305-311. 10.1590/S0100-204X2007000300002

Durães FOM, Magalhães PC, Gama EEG, Oliveira AC. Caracterização fenotípica de linhagens de milho quanto ao rendimento e à eficiência fotossintética. Revista Brasileira de Milho e Sorgo 2005; 4: 355-361. 10.18512/1980-6477/rbms.v4n3p355-361

Franco AC. Relações hídricas em plantas do cerrado: As plantas lenhosas do cerrado transpiram livremente? In: Prado CHBA, Casali CA. Fisiologia vegetal: práticas em relações hídricas, fotossíntese e nutrição mineral. Barueri: Manole; 2006.

Gomes MMA, Lagôa AMMA, Medina CL, Machado EC, Machado MA. Interactions between leaf water potential, stomatal conductance and abscisic acid content of orange trees submitted to drought stress. Brazilian Journal of Plant Physiology 2004; 16(3): 155-161. 10.1590/S1677-04202004000300005

Gonçalves JFC, Silva CEM, Guimarães DG. Fotossíntese e potencial hídrico foliar de plantas jovens de andiroba submetidas à deficiência hídrica e à reidratação. Pesquisa Agropecuária Brasileira 2009; 44(1): 8-14.

Junglos FS, Junglos MS, Dresch DM, Pereira NS, Kodama FM, Scalon SPQ. Recovery of the photosynthetic capacity of Campomanesia adamantium (Myrtaceae) after water deficit. Brazilian Journal of Botany 2016; 39(2): 541-546. 10.1007/s40415-016-0275-x

Klink CA, Machado RB. Conservação do cerrado brasileiro. Megadiversidade 2005; 1(1): 147-155.

Kottek M, Grieser J, Beck C, Rudolf B, Rubel F. World map of the Köppen-Geiger climate classification updated. Meteorologische Zeitschrift 2006; 15(3): 259-263. 10.1127/0941-2948/2006/0130

Magalhães Filho JR, Amaral LRD, Machado DFSP, Medina CL, Machado EC. Deficiência hídrica, trocas gasosas e crescimento de raízes em laranjeira ‘Valência’ sobre dois tipos de porta enxertos. Bragantia 2008; 67(1): 75-82. 10.1590/S0006-87052008000100009

Mariano KRS, Barreto LS, Silva AHB, Neiva GKP, Ribeiro AJ, Amorim SMC. Fotossíntese e tolerância protoplasmática foliar em Myracrodruon urundeuva Fr. All. Revista Floresta 2009; 39(4): 853-859. 10.5380/rf.v39i4.16320

Medrano H, Escalona JM, Bota J, Gulias J, Flexas J. Regulation of photosynthesis of C3 plants in response to progressive drought: stomatal conductance as a reference parameter. Annals of Botany 2002; 89(7): 895-905. 10.1093/aob/mcf079

Pacheco AC, Camargo PR, Souza CGM. Deficiência hídrica e aplicação de ABA nas trocas gasosas e no acúmulo de flavonoides em calêndula (Calendula officinalis L.). Acta Scientiarum Agronomy 2011; 33(2): 275-281. 10.4025/actasciagron.v33i2.6390

Parry MAJ, Andralojc PJ, Khan S, Lea PJ, Keys AJ. Rubisco activity: effects of drought stress. Annals of Botany 2002; 89(7): 833-839. 10.1093/aob/mcf103

Pinto JVC, Vieira MC, Zárate NAH, Formagio ASN, Cardoso CAL, Carnevali TO, Souza PHN. Effect of soil nitrogen and phosphorus on early development and essential oil composition of Schinus terebinthifolius Raddi. Journal of Essential Oil-Bearing Plants 2016; 19(1): 247-257. 10.1080/0972060X.2014.977561

Queiroz CGS, Garcia QS, Lemos Filho JP. Atividade fotossintética e peroxidação de lipídios de membrana em plantas de aroeira-do-sertão sob estresse hídrico e após reidratação. Brazilian Journal of Plant Physiology 2002; 14(1): 59-63. 10.1590/S1677-04202002000100008

Ribeiro JF, Walter BMT. Fitofisionomias do bioma cerrado. In: Sano SM, Almeida SP, editors. Cerrado: ambiente e flora. Planaltina: Embrapa-CPAC ; 1998. p. 89-166.

Silva EC, Nogueira RJMC, Vale FHA, Araújo FP, Pimenta MA. Stomatal changes induced by intermittent drought in four umbu tree genotypes. Brazilian Journal of Plant Physiology 2009; 21(1): 33-42. 10.1590/S1677-04202009000100005

Silva Neto SP, Costa CJ. Importância econômica, social e ambiental do pequizeiro. Planaltina: Embrapa Cerrados; 2010.

Souza CC, Oliveira FA, Silva IF, Amorim Neto MS. Avaliação de métodos de determinação de água disponível e manejo da irrigação em terra roxa sob cultivo de algodoeiro herbáceo. Revista Brasileira de Engenharia Agrícola e Ambiental 2000; 4(3): 338-342. 10.1590/S1415-43662000000300006

Thach LB, Shapcott A, Schmidt S, Critchley C. The OJIP fast fluorescence rise characterizes Graptophyllum species and their stress responses. Photosynthesis Research 2007; 94(2-3): 423-436. 10.1007/s11120-007-9207-8
 

5ebad9bb0e8825871a14925b floram Articles
Links & Downloads

FLORAM

Share this page
Page Sections