Floresta e Ambiente
https://floram.org/article/doi/10.1590/2179-8087.045518
Floresta e Ambiente
Original Article Conservation of Nature

Potential and Future Geographical Distribution of Eremanthus erythropappus (DC.) MacLeish: a Tree Threatened by Climate Change

Monica Canaan Carvalho; Lucas Rezende Gomide; Fausto Weimar Acerbi Júnior; David Tng

Downloads: 0
Views: 67

Abstract

ABSTRACT: Eremanthus erythropappus is a commercially-important tree which has a long history of exploitation in the Brazilian State of Minas Gerais. The knowledge on the potential geographical distribution of E. erythropappus is therefore critical for the species sustainability. Thus, the aim of this study was to estimate and map current and future ecological niche for E. erythropappus in Minas Gerais. We used the Random Forests algorithm to model the ecological niche for current and future climates scenarios. Our predictions indicate Espinhaço, Mantiqueira, and Canastra mountain ranges as core areas of distribution and forecast drastic reductions in potential areas under all climate scenarios. Based on our results, we highlight that the continual harvesting of naturally-occurring E. erythropappus populations will not be sufficient to supply the market demand. Silviculture practices would likely serve as an economically viable and ecological sustainable alternative to harvesting natural populations.

Keywords

candeia trees, random forests, habitat suitability

References

Amaral C, Amaral W, Pereira I, Oliveira P, Machado V. Comparação florístico-estrutural dos estratos adultos e regenerantes em área minerada de campo rupestre, Diamantina, MG. Cerne 2015; 21(2): 183-190. http://dx.doi.org/10.1590/01047760201521021405.

Araújo F, Tng D, Apgaua D, Coelho P, Pereira D, Santos R. Post-fire plant regeneration across a closed forest-savanna vegetation transition. Forest Ecology and Management 2017; 400(15): 77-84. http://dx.doi.org/10.1016/j.foreco.2017.05.058.

Brenes-Arguedas T, Roddy A, Coley P, Kursar T. Do differences in understory light contribute to species distributions along a tropical rainfall gradient? Oecologia 2011; 166(2): 443-456. http://dx.doi.org/10.1007/s00442-010-1832-9. PMid:21120671.

Bucklin D, Basille M, Benscoter A, Brandt L, Mazzotti F, Romañach S et al. Comparing species distribution models constructed with different subsets of environmental predictors. Diversity & Distributions 2014; 21(1): 1-13. http://dx.doi.org/10.1111/ddi.12247.

Carnaval AC, Moritz C. Historical climate modelling predicts patterns of current biodiversity in the Brazilian Atlantic forest. Journal of Biogeography 2008; 35(7): 1187-1201. http://dx.doi.org/10.1111/j.1365-2699.2007.01870.x.

Carvalho M, Gomide L, Santos R, Scolforo JR, Carvalho L, Mello J. Modeling ecological niche of tree species in Brazilian tropical area. Cerne 2017; 23(2): 229-240. http://dx.doi.org/10.1590/01047760201723022308.

Clark A, Khweiss N, Salazar L, Verdadero L. Promoting sustainability in the value chain of natural bisabolol, a brazilian rainforest product. New York: Columbia University; 2011.

Coelho GLN, Carvalho LMT, Gomide LR. Modelagem preditiva de distribuição de espécies pioneiras no Estado de Minas Gerais. Pesquisa Agropecuária Brasileira 2016; 51(3): 207-214. http://dx.doi.org/10.1590/S0100-204X2016000300002.

Condit R, Ashton P, Baker P, Bunyavejchewin S, Gunatilleke S, Gunatilleke N et al. Spatial patterns in the distribution of tropical tree species. Science 2000; 288(5470): 1414-1418. http://dx.doi.org/10.1126/science.288.5470.1414. PMid:10827950.

Curi N, Marques J, Marques A, Fernandes E. Solos, geologia, relevo e mineração. In: Scolforo J, Carvalho L, Oliveira A, editors. Zoneamento ecológico-econômico do estado de Minas Gerais: componentes geofísico e biótico. Lavras: UFLA; 2008. p. 73-88.

Cutler DR, Edwards TC Jr, Beard KH, Cutler A, Hess KT, Gibson J et al. Random Forest for classification in ecology. Ecology 2007; 88(11): 2783-2792. http://dx.doi.org/10.1890/07-0539.1. PMid:18051647.

Donadelli F. Motivações e resultados da certificação florestal: um estudo de caso cadeia de valor da candeia. Ambiente & Sociedade 2012; 15(3): 97-121. http://dx.doi.org/10.1590/S1414-753X2012000300007.

Environmental Systems Research Institute – ESRI. ArcGIS Desktop: release 10.1. Redlands: ESRI; 2010.

Feitosa S, Davide A, Tonetti O, Fabricante J, Lui L. Estudos de viabilidade de sementes de Candeia Eremanthus erythropappus (DC.) MacLeish por meio de testes de germinação e raios X. Floresta 2009; 39(2): 393-399. http://dx.doi.org/10.5380/rf.v39i2.14565.

Garzón M, Blazek R, Neteler M, Dios R, Ollero H, Furlanello C. Predicting habitat suitability with machine learning models: the potential area of Pinus sylvestris L. in the Iberian Peninsula. Ecological Modelling 2006; 197(3-4): 383-393. http://dx.doi.org/10.1016/j.ecolmodel.2006.03.015.

GFA Consulting Group. Análise de mercado e da cadeia produtiva do óleo de candeia e do alfa-Bisabolol. Alemanha; 2006. 72 p. Final Report.

Guo F, Lenoir J, Bonebrake T. Land-use change interacts with climate to determine elevational species redistribution. Nature Communications 2018; 9(1): 1315. http://dx.doi.org/10.1038/s41467-018-03786-9. PMid:29615626.

Gwitira I, Murwira A, Shekede M, Masocha M, Chapano C. Precipitation of the warmest quarter and temperature of the warmest month are key to understanding the effect of climate change on plant species diversity in Southern African Savanna. African Journal of Ecology 2014; 52(2): 209-216. http://dx.doi.org/10.1111/aje.12105.

Hamann A, Wang T. Potential effects of climate change on ecosystem and tree species distribution in British Columbia. Ecology 2006; 87(11): 2773-2786. http://dx.doi.org/10.1890/0012-9658(2006)87[2773:PEOCCO]2.0.CO;2. PMid:17168022.

Hijmans R, Cameron S, Parra J, Jones P, Jarvis A. Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology 2005; 25(15): 1965-1978. http://dx.doi.org/10.1002/joc.1276.

Instituto Estadual de Florestas – IEF [online]. Belo Horizonte; 2017 [cited 2019 Jan 7]. Available from: http://www.ief.mg.gov.br/areas-protegidas/banco-de-dados-de-unidades-de-conservacao-estaduais

Kurz WA, Dymond C, Stinson G, Rampley G, Neilson E, Carroll A et al. Mountain pine beetle and forest carbon feedback to climate change. Nature 2008; 452(7190): 987-990. http://dx.doi.org/10.1038/nature06777. PMid:18432244.

Liaw A, Wiener M. Classification and regression by random forest. R News 2012; 2(3): 18-22.

Lorena A, Jacintho L, Siqueira M, De Giovanni R, Lohmann G, Carvalho A et al. Comparing machine learning classifiers in potential distribution modeling. Expert Systems with Applications 2011; 38(5): 5268-5275. http://dx.doi.org/10.1016/j.eswa.2010.10.031.

Magalhães C, Missagia R, Costa F, Costa M. Diversidade de fungos endofíticos em Candeia Eremanthus erythropappus (DC.) MacLeish. Cerne 2008; 14(3): 267-273.

Martins F, Gonzaga G, Santos D, Reboita M. Classificação climática de Köppen e de Thornthwaite para Minas Gerais: cenário atual e projeções futuras. Revista Brasileira de Climatologia 2018; 1: 129-156. http://dx.doi.org/10.5380/abclima.v1i0.60896.

McIntyre S, Rangel E, Ready P, Carvalho B. Species-specific Ecological niche modeling predicts different range contractions for Lutzomyia intermedia and a related vector of Leishmania braziliensis following climate change in South America. Parasites & Vectors 2017; 10(1): 10-157. http://dx.doi.org/10.1186/s13071-017-2093-9. PMid:28061911.

Meira M Jr, Pereira I, Machado E, Mota S, Otoni T. Espécies potenciais para recuperação de áreas de floresta estacional semidecidual com exploração de minério de ferro na serra do Espinhaço. Bioscience Journal 2015; 31(1): 283-295. http://dx.doi.org/10.14393/BJ-v31n1a2015-23414.

Menze B, Kelm B, Masuch R, Himmelreich U, Bachert P, Petrich W et al. A comparison of random forest and its Gini importance with standard chemometric methods for the feature selection and classification of spectral data. BMB Bioinformatics 2009; 10(1): 213. http://dx.doi.org/10.1186/1471-2105-10-213. PMid:19591666.

Mori C, Brito J, Scolforo J, Vidal E, Mendes L. Influence of altitude, age and diameter on yeld and Alpha-Bisabolol content of Candeia trees (Eremanthus erythropappus). Cerne 2009; 15(3): 339-345.

Oliveira A Fo, Fluminhan M Fo. Ecologia da vegetação do parque florestal quedas do Rio Bonito. Cerne 1999; 5(2): 51-64.

Pádua J, Brandão M, Carvalho D. Spatial genetic structure in natural populations of the overexploited tree Eremanthus erythropappus (DC.) Macleish (Asteraceae). Biochemical Systematics and Ecology 2016; 66(1): 307-311. http://dx.doi.org/10.1016/j.bse.2016.04.015.

Pereira I, Santos G, Carlos L, Silva N. Plantio de candeia e uso de topsoil na recuperação de uma cascalheira no Parque Estadual do Biribiri em Diamantina, MG. MG.BIOTA 2015; 8(1): 22-53.

Pérez J, Scolforo J, Oliveira A, Mello J, Borges L, Camolesi JF. Sistema de manejo para a candeia - Eremanthus erythropappus (dc.) Macleish - a opção do sistema de corte seletivo. Cerne 2004; 10(2): 257-273.

Pouteau R, Meyer J, Taputuarai R, Stoll B. Support Vector machines to map rare and endangered native plants in Pacific islands forests. Ecological Informatics 2012; 9(1): 37-46. http://dx.doi.org/10.1016/j.ecoinf.2012.03.003.

Prasad A, Iverson L, Matthews S, Peters M. A multistage decision support framework to guide tree species management under climate change via habitat suitability and colonization models, and a knowledge-based scoring system. Landscape Ecology 2016; 31(9): 2187-2204. http://dx.doi.org/10.1007/s10980-016-0369-7.

R Core Team. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2017.

Scolforo H, Scolforo J, Mello J, Ferraz A Fo, Rossoni D, Altoé T et al. Autoregressive spatial analysis and individual tree modeling as strategies for the management of Eremanthus erythropappus. J Forestry Res 2016a; 27(3): 595-603. http://dx.doi.org/10.1007/s11676-015-0185-y.

Scolforo J, Altoé T, Scolforo H, Mello J, Silva C, Ferraz A Fo. Management strategies of Eremanthus erythropappus (DC.) MacLeish under different initial spacing. Ciência e Agrotecnologia 2016b; 40(3): 298-304. http://dx.doi.org/10.1590/1413-70542016403042715.

Scolforo J, Oliveira A, Davide A. Manejo sustentável da candeia: o caminhar de uma nova experiência florestal em Minas Gerais. Lavras: UFLA; 2012. 329 p.

Serviço Florestal Brasileiro – SFB [online]. Brasília; 2019 [cited 2019 Jan 7]. Available from: http://www.florestal.gov.br/modulo-de-relatorios

Silva C, Oliveira A, Coelho L Jr, Scolforo J, Souza A. Viabilidade econômica e rotação florestal de plantios de Candeia (Eremanthus erythropappus) em condição de risco. Cerne 2014; 20(1): 113-122. http://dx.doi.org/10.1590/S0104-77602014000100015.

Silva M, Mello J, Scolforo J, Czanck L, Andrade I, Oliveira A. Análise da distribuição espacial da candeia (Eremanthus erythropappus (DC.) MacLeish) sujeita ao sistema de manejo porta-sementes. Cerne 2008; 14(4): 311-316.

Silveira FAO, Negreiros D, Barbosa NPU, Buisson E, Carmo FF, Carstensen DW et al. Ecology and evolution of plant diversity in the endangered campo rupestre: a neglected conservation priority. Plant and Soil 2016; 403(1-2): 129-152. http://dx.doi.org/10.1007/s11104-015-2637-8.

Siqueira F, Pinto L. Semeadura direta de Candeia (Eremanthus erythropappus) sob diferentes adubações em Inconfidentes – MG. Agrogeoambiental 2009; 1(4): 64-69.

Sóberon J, Peterson AT. Interpretation of models of fundamental ecological niches and species’ distributional areas. Biodiversity Informatics 2005; 2(0): 1-10. http://dx.doi.org/10.17161/bi.v2i0.4.

Turchetto-Zolet A, Salgueiro F, Turchetto C, Cruz F, Veto N, Barros M et al. Phylogeography and ecological niche modelling in Eugenia uniflora (Myrtaceae) suggest distinct vegetational responses to climate change between the southern and the northern Atlantic Forest. Botanical Journal of the Linnean Society 2016; 182(3): 670-688. http://dx.doi.org/10.1111/boj.12473.

Vieira F, Fajardo C, Carvalho D. Floral biology of candeia (Eremanthus erythropappus, Asteraceae). PFB 2012; 32(72): 477-481. http://dx.doi.org/10.4336/2012.pfb.32.72.477.

Wang T, Campbell E, O’Neill G, Aitken S. Projecting future distributions of ecosystem climate niches: uncertainties and management applications. Forest Ecology and Management 2012; 279(1): 128-140. http://dx.doi.org/10.1016/j.foreco.2012.05.034.

Wang T, Wang G, Innes J, Nitschke C, Kang H. Climatic niche models and their consensus projections for future climates for four major forest tree species in the Asia-Pacific region. Forest Ecology and Management 2016; 360(15): 357-366. http://dx.doi.org/10.1016/j.foreco.2015.08.004.

Watanabe M, Suzuki T, O’ishi R, Komuro Y, Watanabe S, Emori S et al. Improved climate simulation by MIROC5: mean states, variability, and climate sensitivity. Journal of Climate 2010; 23(23): 6312-6335. http://dx.doi.org/10.1175/2010JCLI3679.1.

Zhang L, Liu S, Sun P, Wang T, Wang G, Zhang X et al. Consensus forecasting of species distributions: the effects of niche model performance and niche properties. PLoS One 2015; 10(3): e0120056. http://dx.doi.org/10.1371/journal.pone.0120056. PMid:25786217.
 

5d7fa0540e8825996bbbebff floram Articles
Links & Downloads

FLORAM

Share this page
Page Sections