Floresta e Ambiente
https://floram.org/article/doi/10.1590/2179-8087.043618
Floresta e Ambiente
Original Article Wood Science and Technology

Elementary, Chemical and Energy Characteristics of Brazil Nuts Waste (Bertholletia excelsa) in the State of Pará

Renata Ingrid Machado Leandro; Jesomi Jonatan da Costa Abreu; Cleibiane da Silva Martins; Iêdo Souza Santos; Maria Lucia Bianchi; João Rodrigo Coimbra Nobre

Downloads: 0
Views: 106

Abstract

ABSTRACT: This study aimed to determine the chemical and energetic composition of Brazil nut waste in the city of Castanhal-PA. Some of the material was crushed, sifted and stored for acclimatization and analysis. Molecular and immediate chemical analyses were performed on the raw material according to NBR standards. Another part was charred in Muffle furnace, with heating rate of 1.67 °C.min-1 and temperature of 450 °C for 60 minutes. For biomass, 55.76% of lignin and 2.61% of minerals were found. Means of 65.67% for volatiles were also found; 2.08% of ashes and 21.64% of fixed carbon. In the elementary, means of 53.54% of carbon and 0.11% of sulfur were found. For charcoal, 25.81% of volatiles were found; 1.76% of ashes and 67.50% of fixed carbon. Residues have high levels of lignin, fixed carbon and low ash contents, demonstrating potential for direct burning for energy, charcoal, activated carbon and biochar.

Keywords

biomass, lignin, charcoal, carbon

References

Apaydin-Varol E, Erülken Y. A study on the porosity development for biomass based carbonaceous materials. Journal of the Taiwan Institute of Chemical Engineers 2015; 54: 37-44. http://dx.doi.org/10.1016/j.jtice.2015.03.003.

Associação Brasileira de Normas Técnicas – ABNT. NBR-13999: determinação do resíduo (cinza) após a incineração a 525 °C. Rio de Janeiro: ABNT; 2003.

Associação Brasileira de Normas Técnicas – ABNT. NBR-7989: polpa celulósica e madeira: determinação de lignina insolúvel em ácido. Rio de Janeiro: ABNT; 2010a.

Associação Brasileira de Normas Técnicas – ABNT. NBR-14853: determinação do material solúvel em etanol-tolueno e em diclorometano e acetona. Rio de Janeiro: ABNT; 2010b.

Bonelli PR, Della Rocca PA, Cerrella EG, Cukierman AL. Effect of pyrolysis temperature on composition, surface properties and thermal degradation of Brazil nut shells. Bioresource Technology 2001; 76(1): 15-22. http://dx.doi.org/10.1016/S0960-8524(00)00085-7. PMid:11315805.

Brito JO, Barrichelo LEG. Correlações entre características físicas e químicas da madeira e a produção de carvão vegetal: densidade e teor de lignina da madeira de eucalipto. Revista IPEF [online] 1977; 14: 9-20 [cited 2018 Nov 26]. Available from: http://www.ipef.br/publicacoes/scientia/nr14/cap01.pdf

Brito SMO, Andrade HMC, Soares LF, Azevedo RP. Brazil nut shells as a new biosorbent to remove methylene blue and indigo carmine from aqueous solutions. Journal of Hazardous Materials 2010; 174(1-3): 84-92. http://dx.doi.org/10.1016/j.jhazmat.2009.09.020. PMid:19781853.

Chen W, Liu X, He RL, Lin T, Zeng QF, Wang XG. Activated carbon powders from wool fibers. Powder Technology 2013; 234: 76-83. http://dx.doi.org/10.1016/j.powtec.2012.09.026.

Chunhieng T, Hafidi A, Pioch D, Brochier J, Didier M. Detailed study of Brazil nut (Bertholletia excelsa) oil micro-compounds: phospholipids, tocopherols and sterols. Journal of the Brazilian Chemical Society 2008; 19(7): 1374-1380. http://dx.doi.org/10.1590/S0103-50532008000700021.

Homma AKO. Cemitério das Castanheiras. Ciência Hoje 2004; 34(202): 60-63.

Kainer KA, Wadt LHO, Gomes-Silva MAP, Capanu M. Liana loads and their association with Bertholletia excelsa fruit and nut production, diameter growth and crown attributes. Journal of Tropical Ecology 2006; 22(2): 147-154. http://dx.doi.org/10.1017/S0266467405002981.

Lorini A, Wobeto C, Rosa CCB, Hatem TA, Botelho SCC. Influence of packaging on the quality of Brazil nuts. Acta Amazonica 2018; 48(4): 368-372. http://dx.doi.org/10.1590/1809-4392201701772.

Melo SS, Diniz JEM, Guimarães JH, Costa JS, Brazil DSB, Morais SSS et al. Production and characterization of absorbent heat from the bark of residual Brazil nut bark (Bertholletia excelsa L.). Chemistry Central Journal 2015; 36(9): 1-9. http://dx.doi.org/10.1186/s13065-015-0114-3. PMid:26150893.

Melo VF, Batista AH, Barbosa JZ, Barbeiro L, Gomes R, Dultra MTM. Soil quality and reforestation of the Brazil nut tree (Bertholletia excelsa Bonpl.) after laterite-type bauxite mining in the Brazilian Amazon forest. Ecological Engineering 2018; 125: 111-118. http://dx.doi.org/10.1016/j.ecoleng.2018.10.016.

Moreno-Castilla C. Adsorption of organic molecules from aqueous solutions on carbon materials. Carbon 2004; 42(1): 83-94. http://dx.doi.org/10.1016/j.carbon.2003.09.022.

Moulin JC, Nobre JRC, Castro JP, Trugilho PF, Arantes MDC. Effect of extractives and carbonization temperature on energy characteristics of wood waste in Amazon rainforest. Cerne 2017; 23(2): 209-218. http://dx.doi.org/10.1590/01047760201723022216.

Netto GBF, Oliveira AGP, Coutinho HWM, Nogueira MFM, Rendeiro G. Caracterização energética de biomassas amazônicas. In: Anais do 6º Encontro de Energia no Meio Rural [online]; 2006; Campinas. Campinas: UNICAMP; 2006 [cited 2018 Nov 26]. Available from: http://www.proceedings.scielo.br/pdf/agrener/n6v1/035.pdf

Nobre JRC, Castro JP, Motta JP, Bianchi ML, Trugilho PF, Borges WMS et al. Activated carbon production of the wood residue of the Amazonian area. Scientia Forestalis 2015; 43(108): 895-906. http://dx.doi.org/10.18671/scifor.v43n108.14.

Nogueira RM, Ruffato S, Carneiro JS, Pires EM, Álvare VS. Evaluation of the carbonization of the Brazil nut urchin in a drum type oven. Scientific Electronic Archives [online] 2014; 2014(6): 7-17 [cited 2018 Nov 26]. Available from: https://ainfo.cnptia.embrapa.br/digital/bitstream/item/114745/1/25369.pdf

Oliveira AC, Carneiro ACO, Vital BR, Almeida W, Pereira BLC, Cardoso MT. Quality parameters of Eucalyptus pellita F. Muell. Wood and charcoal. Scientia Forestalis 2010; 87(38): 431-439.

Saini JK, Saini R, Tewari L. Lignocellulosic agriculture wastes as biomass feedstocks for second-generation bioethanol production: concepts and recent developments. 3 Biotech 2015; 5(4): 337-353. http://dx.doi.org/10.1007/s13205-014-0246-5. PMid:28324547.

Santos RC, Carneiro ADCO, Vital BR, Castro RVO, Vidaurre GB, Trugilho PF et al. Effect of poperties chemical and siringil/guaiacil relation wood clones of eucalytus in the production of charcoal. Ciência Florestal 2016; 26(2): 657-669. http://dx.doi.org/10.5902/1980509822765.

Scatolino MV, Cabral LF No, Protásio TP, Carneiro ACO, Andrade CR, Guimarães JB Jr et al. Options for generation of sustainable energy: production of pellets based on combinations between lignocellulosic biomasses. Waste and Biomass Valorization 2018; 9(3): 479-489. http://dx.doi.org/10.1007/s12649-017-0010-2.

Schröder E, Thomauske K, Weber C, Hornung A, Tumiatti V. Experiments on the generation of activated carbon from biomass. Journal of Analytical and Applied Pyrolysis 2007; 79(1-2): 106-111. http://dx.doi.org/10.1016/j.jaap.2006.10.015.

Sekirifa ML, Hadj-Mahammed M, Pallier S, Baameur L, Richard D, Al-Dujaili AH. Preparation and characterization of an activated carbon from a variety of stones by physical activation with carbon dioxide. Journal of Analytical and Applied Pyrolysis 2013; 99: 155-160. http://dx.doi.org/10.1016/j.jaap.2012.10.007.

Silva AA, Santos MKV, Gama JRV, Noce R, Leão S. Potential of Brazil nut extraction to generate income in the communities of the Lower Amazon mesoregion, Brazil. Floresta e Ambiente 2013; 20(4): 500-509. http://dx.doi.org/10.4322/floram.2013.046.

Vieira AC, Souza NM, Bariccatti RA, Siqueira JAC, Eduardo C, Nogueira C. Characterization of rice husk for power generation. Varia Scientia Agrárias 2012; 3(1): 51-57.

Werther J, Saenger M, Hartge EU, Ogada T, Siagi Z. Combustion of agricultural residues. Progress in Energy and Combustion Science 2000; 26(1): 1-27. http://dx.doi.org/10.1016/S0360-1285(99)00005-2.
 

5d7fce540e88257c69bbebff floram Articles
Links & Downloads

FLORAM

Share this page
Page Sections