25APR

FLORAM receives Impact Factor

We are pleased to announce that FLORAM has received its first impact factor rating in the 2022 Journal Citation Reports (JCR).

Now FLORAM has the highest impact factor among Brazilian Forest Sciences journals.

Floresta e Ambiente
https://floram.org/article/doi/10.1590/2179-8087.040318
Floresta e Ambiente
Original Article Forest Management

Allometric Equations to Predict Pinus palustris Biomass in the Southeastern United States

Aline Araújo Farias; Salvador A. Gezan; Melissa Pisaroglo de Carvalho; Antonio Carlos Ferraz Filho; Carlos Pedro Boechat Soares

Downloads: 0
Views: 889

Abstract

ABSTRACT: Pinus palustris Mill. ecosystem is considered one of the most threatened of North America. In this context, studies on biomass quantification are fundamental for forest management plans. Thus, the objective of this study was to develop a set of allometric equations to predict total P. palustris stump-biomass. Biomass data were collected at different locations in the southeastern United States. A total of 119 allometric equations were fitted from the combination of explanatory variables: diameter at breast height (DBH), height (H), age (I), basal area (G), number of trees per hectare (N), site index (S) and quadratic diameter (Dq). One of the models that presented the lowest residual standard error (Sy.x) and root mean square error (RMSE) was ln(W) = -0.9978+0.7082.(H)+0.1009.ln(H.DBH)-0.5310.(N)-0.0003.ln(Dq). Therefore, the insertion of dendrometric variables characteristic of forest stands has great efficacy in biomass prediction for trees from different sites.

Keywords

forest management, modeling, regression

References

Araújo CAA Jr, Soares CPB, Leite HG. Curvas de índices de local em povoamentos de eucalipto obtidas por regressão quantílica. Pesquisa Agropecuária Brasileira 2016; 51(6): 720-727. http://dx.doi.org/10.1590/S0100-204X2016000600003.

Binoti MLMS, Binoti DHB, Leite HG. Aplicação de redes neurais artificiais para estimação da altura de povoamentos equiâneos de eucalipto. Revista Árvore 2013; 37(4): 639-645. http://dx.doi.org/10.1590/S0100-67622013000400007.

Boring LR. The longleaf pine ecosystem: ecology, silviculture, and restoration. Forest Science 2007; 53(5): 618.

Brockway DG, Outcalt KW, Tomczak DJ, Johnson EE. Restoration of longleaf pine ecosystems. Asheville: US Department of Agriculture, Forest Service; 2005. (General Technical Report Southern Research Station; no. SRS-83).

Chave J, Réjou‐Méchain M, Búrquez A, Chidumayo E, Colgan MS, Delitti WB et al. Improved allometric models to estimate the aboveground biomass of tropical trees. Global Change Biology 2014; 20(10): 3177-3190. http://dx.doi.org/10.1111/gcb.12629. PMid:24817483.

Cordeiro MA, Pereira NNJ, Binoti DHB, Binoti MLMS, Leite HG. Estimativa do volume de Acacia mangium utilizando técnicas de redes neurais artificiais e máquinas vetor de suporte. Pesquisa Florestal Brasileira 2015; 35(83): 255-261. http://dx.doi.org/10.4336/2015.pfb.35.83.596.

Cosenza DN, Leite HG, Marcatti GE, Binoti DHB, Alcântara AEM, Rode R. Classificação da capacidade produtiva de sítios florestais utilizando máquina de vetor de suporte e rede neural artificial. Scientia Forestalis 2015; 43(108): 955-963. http://dx.doi.org/10.18671/scifor.v43n108.19.

Ferraz Filho AC, Mola-Yudego B, Ribeiro A, Scolforo JRS, Loos RA, Scolforo HF. Height-diameter models for Eucalyptus sp. plantations in Brazil. Cerne 2018; 24(1): 9-17. http://dx.doi.org/10.1590/01047760201824012466.

Gonzalez-Benecke CA, Gezan SA, Albaugh TJ, Allen HL, Burkhart HE, Fox TR et al. Local and general above-stump biomass functions for loblolly pine and slash pine trees. Forest Ecology and Management 2014b; 334: 254-276. http://dx.doi.org/10.1016/j.foreco.2014.09.002.

Gonzalez-Benecke CA, Gezan SA, Martin TA, Cropper WP Jr, Samuelson LJ, Leduc DJ. Individual tree diameter, height, and volume functions for longleaf pine. Forest Science 2014a; 60(1): 43-56. http://dx.doi.org/10.5849/forsci.12-074.

Gonzalez-Benecke CA, Zhao D, Samuelson L, Martin T, Leduc D, Jack S. Local and general above-ground biomass functions for pinus palustris trees. Forests 2018; 9(6): 310. http://dx.doi.org/10.3390/f9060310.

Leduc D, Goelz J. A height–diameter curve for longleaf pine plantations in the Gulf Coastal Plain. Southern Journal of Applied Forestry 2009; 33(4): 164-170.

Litton CM, Boone KJ. Allometric models for predicting aboveground biomass in two widespread woody plants in Hawaii. Biotropica 2008; 40(3): 313-320. http://dx.doi.org/10.1111/j.1744-7429.2007.00383.x.

Mugasha WA, Eid T, Bollandsås OM, Malimbwi RE, Chamshama SAO, Zahabu E et al. Allometric models for prediction of above-and belowground biomass of trees in the miombo woodlands of Tanzania. Forest Ecology and Management 2013; 310: 87-101. http://dx.doi.org/10.1016/j.foreco.2013.08.003.

O’ Brien RM. A caution regarding rules of thumb for variance inflation factors. Quality & Quantity 2007; 41(5): 673-690. http://dx.doi.org/10.1007/s11135-006-9018-6.

Ratuchne LC, Koehler HS, Watzlawick LF, Sanquetta CR, Schamne PA. Estado da arte na quantificação de biomassa em raízes de formações florestais. Floresta e Ambiente 2016; 23(3): 450-462. http://dx.doi.org/10.1590/2179-8087.131515.

R Core Team. R: a language and environment for statistical computing [online]. Vienna: The R Foundation; 2013 [cited 2018 Nov 6]. Available from: https://www.r-project.org/

Reis LP, Souza AL, Mazzei L, Reis PCM, Leite HG, Soares CPB et al. Prognosis on the diameter of individual trees on the eastern region of the amazon using artificial neural networks. Forest Ecology and Management 2016; 382: 161-167. http://dx.doi.org/10.1016/j.foreco.2016.10.022.

Repola J. Biomass equations for birch in Finland. Silva Fennica 2008; 42(4): 605-624. http://dx.doi.org/10.14214/sf.236.

Samuelson LJ, Stokes TA, Butnor JR, Johnsen KH, Gonzalez-Benecke CA, Anderson P et al. Ecosystem carbon stocks in Pinus palustris forests. Canadian Journal of Forest Research 2014; 44(5): 476-486. http://dx.doi.org/10.1139/cjfr-2013-0446.

Shimizu JY. Pinus na silvicultura brasileira. 1. ed. Colombo: Embrapa Florestas; 2008.

Spechler RM, Kroening SE. Hydrology of polk county, florida. 1st ed. Virginia: US Department of the Interior and US Geological Survey; 2007. http://dx.doi.org/10.3133/sir20065320.
 

5d7f8f070e8825553cbbebff floram Articles
Links & Downloads

FLORAM

Share this page
Page Sections