25APR

FLORAM receives Impact Factor

We are pleased to announce that FLORAM has received its first impact factor rating in the 2022 Journal Citation Reports (JCR).

Now FLORAM has the highest impact factor among Brazilian Forest Sciences journals.

Floresta e Ambiente
https://floram.org/article/doi/10.1590/2179-8087.039818
Floresta e Ambiente
Original Article Conservation of Nature

Plant-canopy Effects on Natural Regeneration in Sites Under Restoration: Do Tree Species Matter?

Lohana Lopes Lameira; Fernanda Cunha Gonçalves Ferreira; Rodrigo Antônio Esteves Filardi; Jarbas Marçal Queiroz; Jerônimo Boelsums Barreto Sansevero

Downloads: 0
Views: 914

Abstract

ABSTRACT: How does species choice influence ecological restoration outcomes? In order to answer this question, the goal of this study was to assess the community structure and species richness of natural regeneration beneath the canopy of four native species from the Atlantic Forest (Guarea guidonia (L.) Sleumer; Inga edulis Mart; Nectandra membranacea (SW) Griseb; and, Piptadenia gonoacantha (Mart.) J.F. Macbr). The research was carried out in plantations of native tree species at the Guapiaçu Ecological Reserve, in Rio de Janeiro State, Brazil. Our results pointed that abundance, basal area and species richness were significantly higher beneath Inga compared to Nectandra and Guarea. Whereas the lowest values observed in Guarea may suggest its negative effects under natural regeneration. Therefore, we highlighted that the positive or negative biological effects of tree species, instead of their simple response (mortality and initial growth), must be considered in ecological restoration projects.

Keywords

Atlantic Forest, ecological filter, plant-plant interaction, facilitation, Inga edulis

References

APG IV. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Botanical Journal of the Linnean Society 2016; 181(1): 1-20. http://dx.doi.org/10.1111/boj.12385.

Azevedo AD. Composição florística e estoque de carbono em áreas de recuperação da mata atlântica na bacia do Rio Guapiaçu, Cachoeiras de Macacu, RJ [Dissertação]. Seropédica: Universidade Federal Rural do Rio de Janeiro; 2012.

Cadotte MW, Carscadden K, Mirotchnick N. Beyond species: functional diversity and the maintenance of ecological processes and services. Journal of Applied Ecology 2011; 48(5): 1079-1087. http://dx.doi.org/10.1111/j.1365-2664.2011.02048.x.

Canosa GA, Moraes LFD. Atributos funcionais de espécies da Mata Atlântica: ferramentas para o planejamento ambiental e econômico [online]. Seropédica: Embrapa Agrobiologia; 2016 [cited 2016 out. 1]. (Documentos; no. 305). Available from: https://www.embrapa.br/busca-de-publicacoes/-/publicacao/1056021/atributos-funcionais-de-especies-da-mata-atlantica-ferramentas-para-o-planejamento-ambiental-e-economico

Carnevale NJ, Montagnini F. Facilitating regeneration of secondary forests with the use of mixed and pure plantations of indigenous tree species. Forest Ecology and Management 2002; 163(1-3): 217-227. http://dx.doi.org/10.1016/S0378-1127(01)00581-3.

Clark CJ, Poulsen JR, Connor EF, Parker VT. Fruiting trees as dispersal foci in a semi-deciduous tropical forest. Oecologia 2004; 139(1): 66-75. http://dx.doi.org/10.1007/s00442-003-1483-1. PMid:14745649.

Di Rienzo JA, Casanoves F, Balzarini MG, Gonzalez L, Tablada M, Robledo CW. InfoStat version 2015 [online]. Córdoba: Grupo InfoStat, Universidad Nacional de Córdoba. 2011 [cited 2016 out. 1]. Available from: http://www. infostat.com.ar

Díaz S, Cabido M. Plant functional types and ecosystem function in relation to global change. Journal of Vegetation Science 1997; 8(4): 463-474. http://dx.doi.org/10.2307/3237198.

Dufrêne M, Legendre P. Species assemblages and indicator species: the need for flexible asymmetrical approach. Ecological Monographs 1997; 67(3): 345-366. http://dx.doi.org/10.2307/2963459.

Elliott S, Navakitbumrung P, Kuarak C, Zangkum S, Anusarnsunthorn V, Blakesley D. Selecting framework tree species for restoring seasonally dry tropical forests in northern Thailand based on field performance. Forest Ecology and Management 2003; 184(1-3): 177-191. http://dx.doi.org/10.1016/S0378-1127(03)00211-1.

Finegan B, Delgado D. Structural and floristic heterogeneity in a 30 year-old costa rican rain forest restored on pasture through natural secondary succession. Journal of The Society for Ecological Restoration. 2000; 8(4): 380-393. http://dx.doi.org/10.1046/j.1526-100x.2000.80053.x.

Fink RD, Lindell CA, Morrison EB, Zahawi RA, Holl KD. Patch size and tree species influence the number and duration of bird visits in forest restoration plots in Southern Costa Rica. Restoration Ecology 2009; 17(4): 479-486. http://dx.doi.org/10.1111/j.1526-100X.2008.00383.x.

Gandolfi S, Joly CA, Rodrigues RR. Permeability-impermeability: canopy trees as biodiversity filters. Scientia Agrícola 2007; 64(4): 433-438. http://dx.doi.org/10.1590/S0103-90162007000400015.

Garbin ML, Sánchez-Tapia A, Carrijo TT, Sansevero JBB, Scarano FR. Functional traits behind the association between climbers and subordinate woody species. Journal of Vegetation Science 2013; 25(3): 715-723. http://dx.doi.org/10.1111/jvs.12140.

Garbin ML, Zandavalli RB, Dillenburg LR. Soil patches of inorganic nitrogen in subtropical Brazilian plant communities with Araucaria angustifolia. Plant and Soil 2006; 286(1-2): 323-337. http://dx.doi.org/10.1007/s11104-006-9046-y.

Grossnickle SC. Why seedlings survive: influence of plant attributes. New Forests 2012; 43(5-6): 711-738. http://dx.doi.org/10.1007/s11056-012-9336-6.

Holl KD, Aide TM. When and where to actively restore ecosystems? Forest Ecology and Management 2011; 261(10): 1558-1563. http://dx.doi.org/10.1016/j.foreco.2010.07.004.

Isernhagen I, Moraes LFD, Engel VL. The rise of the Brazilian Network for Ecological Restoration (REBRE): what Brazilian restorationists have learned from networking. Restoration Ecology 2017; 25(2): 172-177. http://dx.doi.org/10.1111/rec.12480.

Lamb D, Erskine PD, Parrotta JA. Restoration of degraded tropical forest landscapes. Science 2005; 310(5754): 1628-1632. http://dx.doi.org/10.1126/science.1111773. PMid:16339437.

Laughlin DC. Applying trait-based models to achieve functional targets for theory-driven ecological restoration. Ecology Letters 2014; 17(7): 771-784. http://dx.doi.org/10.1111/ele.12288. PMid:24766299.

Lavorel S, Garnier E. Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Functional Ecology 2002; 16(5): 545-556. http://dx.doi.org/10.1046/j.1365-2435.2002.00664.x.

Lindner A, Sattler D. Biomass estimations in forests of different disturbance history in the Atlantic Forest of Rio de Janeiro, Brazil. New Forests 2012; 43(3): 287-301. http://dx.doi.org/10.1007/s11056-011-9281-9.

Lojka B, Dumas L, Preininger D, Polesny Z, Banout J. The use and integration of Inga edulis in agroforesty systems in the Amazon: review article. Agricultura Tropica et Subtropica 2010; 43(4): 352-359.

McConkey KR, Prasad S, Corlett RT, Campos-Arceiz A, Brodie JF, Rogers H et al. Seed dispersal in changing landscapes. Biological Conservation 2012; 146(1): 1-13. http://dx.doi.org/10.1016/j.biocon.2011.09.018.

McGill BJ, Enquist BJ, Weiher E, Westoby M. Rebuilding community ecology from functional traits. Ecology and Evolution 2006; 21(4): 178-185. http://dx.doi.org/10.1016/j.tree.2006.02.002. PMid:16701083.

Mejía-Domínguez NR, Meave JA, Díaz-Ávalos C, González EJ. Individual canopy-tree species effects on their immediate understory microsite and sapling community dynamics. Biotropica 2011; 43(5): 572-581. http://dx.doi.org/10.1111/j.1744-7429.2010.00739.x.

Mendes MS, Latawiec AE, Sansevero JBB, Crouzeilles R, Moraes LFD, Castro A et al. Look down—there is a gap—the need to include soil data in Atlantic Forest restoration. Restoration Ecology 2018; 27(2): 363-370.

Mesquita RCG, Ickes K, Ganade G, Williamson GB. Alternative successional pathways in the Amazon Basin. Journal of Ecology 2001; 89(4): 528-537. http://dx.doi.org/10.1046/j.1365-2745.2001.00583.x.

Ostertag R, Warman L, Cordel S, Vitousek PM. Using plant functional traits to restore Hawaiian rainforest. Journal of Apllied Ecology 2015; 52(4): 805-809. http://dx.doi.org/10.1111/1365-2664.12413.

Parrotta JA. Influence of overstory composition on understory colonization by native species in plantations on a degraded tropical site. Journal of Vegetation Science 1995; 6(5): 627-636. http://dx.doi.org/10.2307/3236433.

Pistón N, Michalet R, Schob C, Macek P, Armas C, Pugnaire FI. The balance of canopy and soil effects determines intraspecific differences in foundation species’ effects on associated plants. Functional Ecology 2018; 32(9): 2253-2263. http://dx.doi.org/10.1111/1365-2435.13139.

Rodrigues RR, Gandolfi S, Nave AG, Aronson J, Barreto TE, Vidal CY et al. Large scale ecological restoration of high diversity tropical forests in SE Brazil. Forest Ecology and Management 2011; 261(10): 1605-1613. http://dx.doi.org/10.1016/j.foreco.2010.07.005.

Sansevero JBB, Garbin ML. Restoration success of tropical forests: the search for indicators. Sustainability Indicators 2015; Eds. Latawiec, AE & Agol, D. De Gruyter Open Ltd. Warsaw - Poland.

Sansevero JBB, Prieto PV, de Moraes LFD, Rodrigues PJP. Natural regeneration in plantations of native trees in lowland brazilian atlantic forest: community structure, diversity, and dispersal syndromes. Restoration Ecology 2011; 19(3): 379-389. http://dx.doi.org/10.1111/j.1526-100X.2009.00556.x.

Sansevero JBB, Prieto PV, Sánchez-Tapia A, Braga JMA, Rodrigues PJFP. Past land-use and ecological resilience in a lowland Brazilian Atlantic Forest: implications for passive restoration. New Forests 2017; 48(5): 573-586. http://dx.doi.org/10.1007/s11056-017-9586-4.

Scaramuzza CA, Benini RM, Biderman R, Brancalion PHS, Calmon M, Correa LQ et al. A política Nacional de Recuperação da Vegetação Nativa: lições aprendidas. In: Benini RM, Adeodato S. (Org.). Economia da restauração florestal. The Nature Conservancy; 2017. p. 5-135.

Scervino RP, Torezan MD. Factors affecting the genesis of vegetation patches in anthropogenic pastures in the Atlantic forest domain in Brazil. Plant Ecology & Diversity 2015; 8(4): 475-482. http://dx.doi.org/10.1080/17550874.2015.1044582.

Siddique I, Engel VL, Parrotta JA, Lamb D, Nardoto GB, Ometto JPHB et al. Dominance of legume trees alters nutrient relations in mixed species forest restoration plantings within seven years. Biogeochemistry 2008; 88(1): 89-101. http://dx.doi.org/10.1007/s10533-008-9196-5.

Souza FM, Batista JLF. Restoration of seasonal semideciduous forests in Brazil: influence of age and restoration design on forest structure. Forest Ecology and Management 2004; 191(1): 185-200. http://dx.doi.org/10.1016/j.foreco.2003.12.006.

Souza FM, Gandolfi S, Rodrigues RR. Deciduousness INflUENCES THE UNDERSTORY COMMUNITY IN A SEMIDECIDUOUS TROPICAL FOREST. Biotropica 2014; 46(5): 512-515. http://dx.doi.org/10.1111/btp.12137.

Suganuma MS, Assis GB, Durigan G. Changes in plant species composition and functional traits along the successional trajectory of a restored patch of Atlantic Forest. Community Ecology 2014; 15(1): 27-36. http://dx.doi.org/10.1556/ComEc.15.2014.1.3.

Thijs KW, Aerts R, Van de Moortele P, Musila W, Gulinck H, Muys B. Contrasting Cloud Forest Restoration Potential Between Plantations of Different Exotic Tree Species. Restoration Ecology 2014; 22(4): 472-479. http://dx.doi.org/10.1111/rec.12093.

Veloso HP, Filho ALRR, Lima JCA. Classificação da vegetação brasileira adaptada a um sistema universal [online]. Rio de Janeiro: IBGE; 1991 [cited 2016 out. 1]. Available from: http://hm-jbb.ibict.br/bitstream/1/397/1/1991_classificacaovegetal_Velloso1991.pdf

WebAmbiente. Espécies nativas [online]. Embrapa; 2018 [cited 2016 out. 1]. Available from: https://www.webambiente.gov.br/publico/especies.xhtml
 

5d8a6b8b0e8825434fc51225 floram Articles
Links & Downloads

FLORAM

Share this page
Page Sections