Floresta e Ambiente
Floresta e Ambiente
Original Article Wood Science and Technology

Effects of Heat Treatment on the Relative Amounts of Cellulose in Nanosilver-Impregnated and Untreated Poplar Wood (Populus alba)

Siavash Bayani; Behzad Bazyar; Seyed Ahmad Mirshokraie; Hamid Reza Taghiyari

Downloads: 0
Views: 874


ABSTRACT: The present study investigated the effect of heat treatment on the relative amount of cellulose in untreated and nanosilver-impregnated poplar wood (Populus alba). The impacts on physical and mechanical properties were further studied. Specimens were heated at 145°C and 165°C in hot air medium. In order to enhance heat transfer to the inner parts of specimens, separate sets of specimens were first impregnated with nanosilver suspension in a pressure vessel. Differential scanning calorimetry (DSC) analyses showed that due to high thermal resistance of cellulose, the cellulose relative volume percent increased along with the increase in thermal temperature and the consequent degradation of other wood polymers (hemicellulose and lignin). High correlation was found between the cellulose relative volume percent versus different physical and mechanical properties. Impregnation with nanosilver increased thermal conductivity in the specimens resulting in an enhanced thermal degradation of hemicellulose and lignin, translated into an increased cellulose relative volume.


relative amount of cellulose, heat treatment, nanosilver impregnation, Populus alba, thermal degradation


Ada R. Cluster analysis and adaptation study for safflower genotypes. Bulgarian Journal of Agricultural Science 2013; 19(1): 103-109.

ASTM D143 - 94. Standard test methods for small clear specimens of timber. ASTM International, 2007. 10.1520/D0143-94

Bastani A, Adamopoulos S, Militz H. Shear strength of furfurylated, N-methylol melamine and thermally modified wood bonded with three conventional adhesives. Wood Material Science and Engineering 2016; 12(4): 236-241. 10.1080/17480272.2016.1164754

Behr G, Bollmus S, Gellerich A, Militz H. Improvement of mechanical properties of thermally modified hardwood through melamine treatment. Wood Material Science & Engineering 2017; 13(5): 262-270. 10.1080/17480272.2017.1313313

Borrega M, Kärenlampi PP. Hygroscopicity of heat-treated Norway spruce (Picea abies) wood. European Journal of Wood and Wood Products 2010; 68(2): 233-235. 10.1007/s00107-0090371-8

Boonstra MJ, Tjeerdsma B. Chemical analysis of heat treated softwoods. Holz als Roh-und Werkstoff 2006; 64(3), 204-211. 10.1007/s00107-005-0078-4

Esteves B, Graça J, Pereira H. Extractive composition and summative chemical analysis of thermally treated eucalypt wood. Holzforschung 2008; 62(3): 344-351. 10.1515/HF.2008.057

Fernandez-Puratich H, Oliver-Villanueva JV. Quantification of biomass and energetic value of young natural regenerated stands of Quercus ilex under Mediterranean conditions. Bosque 2014; 35(1): 65-74. 10.4067/S0717-92002014000100007

Figueroa M, Bustos C, Dechent P, Reyes L, Cloutier A, Giuliano M. Analysis of rheological and thermo-hygro-mechanical behaviour of stress-laminated timber bridge deck in variable environmental conditions. Maderas: Ciencia y Tecnologia 2012; 14(3): 303-319.

Gbètoho AJ, Aoudji AKN, Roxburgh L, Ganglo JC. Assessing the suitability of pioneer species for secondary forest restoration in Benin in the context of global climate change. Bois et Forets des Tropiques 2017; 332(2): 43-55.

Hein PRG, Silva JRM, Brancheriau L. Correlations among microfibril angle, density, modulus of elasticity, modulus of rupture and shrinkage in 6-year-old Eucalyptus urophylla × E. grandis. Maderas: Ciencia y Tecnologia 2013; 15(2):171-182. 10.4067/S0718-221X2013005000014

Hill C. Wood modification: chemical, thermal and other processes. Chichester: Wiley; 2006.

Karimi M, Daryaei MG, Torkaman J, Oladi R, Ghanbary MAT, Bari E et al. Natural decomposition of hornbeam wood decayed by the white rot fungus Trametes versicolor. Anais da Academia Brasileira de Ciências 2017; 89(4): 2647-2655. 10.1590/0001-3765201720160714

Li D. Nanostructuring materials towards conventionally unachievable combination of desired properties. Journal of Nanomaterials & Molecular Nanotechnology 2012; 1(1). 10.4172/2324-8777.1000e102

Majidi R. Electronic properties of graphyne nanotubes filled with small fullerenes: a density functional theory study. Journal of Computational Electronics 2016; 15(4): 1263-1268. 10.1007/s10825-016-0925-z

Nandanwar A, Naidu MV, Pandey CN. Development of test methods for wooden furniture joints. Wood Material Science and Engineering 2013; 8(3): 188-197. 10.1080/17480272.2013.814712

Pethig R. Review: where is dielectrophoresis (DEP) going? Journal of Electrochemical Society 2017; 164(5): B3049-B3055. 10.1149/2.0071705jes

Reh U, Kraepelin G, Lamprecht I. Use of differential scanning calorimetry for structural analysis of fungally degraded wood. Applied and Environmental Microbiology 1986; 52(5): 1101-1106.

Saber R, Shakoori Z, Sarkar S, Tavoosidana G, Kharrazi S, Gill P. Spectroscopic and microscopic analyses of rod-shaped gold nanoparticles interacting with single-stranded DNA oligonucleotides. IET Nanobiotechnology 2013; 7(2): 42-49. 10.1049/iet-nbt.2012.0009

Sandberg D, Kutnar A, Mantanis G. Wood modification technologies: a review. iForest 2017; 10(6): 895-908. 10.3832/ifor2380-010

Santos JA. Mechanical behaviour of Eucalyptus wood modified by heat. Wood Science and Technology 2000; 34(1): 39-43. 10.1007/s002260050006

Schmidt O. Wood and tree fungi: biology, damage, protection, and use. Heidelberg: Springer-Verlag; 2006.

Silveira AG, Santini EJ, Kulczynski ST, Trevisan R, Wastowski A, Gatto DA. Tannic extract potential as natural wood preservative of Acacia mearnsii. Anais da Academia Brasileira de Ciências 2017; 89: 3031-3038. 10.1590/0001-3765201720170485

Taghiyari HR. Study on the effect of nano-silver impregnation on mechanical properties of heat-treated Populus nigra. Wood Science and Technology 2011; 45(2): 399-404. 10.1007/s00226-010-0343-5

Taghiyari HR, Enayati A, Gholamiyan H. Effects of nano-silver impregnation on brittleness, physical and mechanical properties of heat-treated hardwood. Wood Science and Technology 2013; 47(3): 467-480. 10.1007/s00226-012-0506-7

Tajvidi M, Gardner DJ, Bousfield DW. Cellulose nanomaterials as binders: laminate and particulate systems. Journal of Renewable Materials 2016; 4(5): 365-376. 10.7569/JRM.2016.634103

Tiemann HD. The effect of different methods of drying on the strength of wood. Lumber World Review 1915; 28(7): 19-20.

Tjeerdsma BF, Boonstra M, Pizzi A, Tekely P, Militz H. Characterization of thermal modified wood: molecular reasons for wood performance improvement. Holz Roh- und Werkstoff 1998; 56: 149-153. 10.1007/s001070050287

Tjeerdsma BF, Militz H. Chemical changes in hydrothermal treated wood: FTIR analysis of combined hydrothermal and dry heat-treated wood. Holz als Roh-und Werkstoff 2005; 63(2): 102-111. 10.1007/s00107-004-0532-8

Tjeerdsma BF, Stevens M, Militz H. Durability aspects of (hydro) thermal treated wood. In: Proceedings of the International Research Group on Wood Preservation; 2000; Kona, Hawaii. Stockholm: IRG-WP; 2000.

5d5feef70e88253349f3bb07 floram Articles
Links & Downloads


Share this page
Page Sections