Floresta e Ambiente
https://floram.org/article/doi/10.1590/2179-8087.039718
Floresta e Ambiente
Original Article Wood Science and Technology

Influence of Particles Size on NIR Spectroscopic Estimations of Charcoal Properties

Fernanda Maria Guedes Ramalho; Rodrigo Simetti; Taiana Guimarães Arriel; Breno Assis Loureiro; Paulo Ricardo Gherardi Hein

Downloads: 0
Views: 1000

Abstract

ABSTRACT: The objective of this study was to evaluate the influence of particle size of charcoal samples on the predictive model statistics of charcoal chemical composition based on the NIR spectroscopy. Spectra of Acacia and of Eucalyptus charcoal were collected in the 100, 60 and 40 mesh granulometry, besides the powder remaining at the bottom of the sieves sets. They were subjected to principal component analysis and partial least square regression in order to estimate of volatile material (VMC), ash (AC) and fixed carbon content (FCC) values. The estimation of the FCC, VMC and AC of Eucalyptus based on NIR was more accurate using spectra of lower-particle-size powder. The models for Acacia charcoal were better using spectra measured at 40 mesh to predict FCC, 100 mesh for AC, and smaller size for VMC. NIR spectroscopy was efficient in estimating the immediate chemical composition of charcoal, except for AC.

Keywords

wood pyrolysis, NIR, proximate chemical analysis, forest biomass

References

Akhtar A, Krepl V, Ivanova T. A combined overview of combustion, pyrolysis, and gasification of biomass. Energy & Fuels 2018; 32(7): 7294-7318. http://dx.doi.org/10.1021/acs.energyfuels.8b01678.

American Society for Testing Materials – ASTM. D1762-84: Standard test method for chemical analysis of wood charcoal. Philadelphia: ASTM International, 2007.

Andrade CR, Trugilho PF, Hein PRG, Lima JT, Napoli A. Near infrared spectroscopy for estimating Eucalyptus charcoal properties. Journal of Near Infrared Spectroscopy 2012; 20(6): 657-666. http://dx.doi.org/10.1255/jnirs.1028.

Barbieri CCT, Osório E, Vilela ACF. Combustibility and reactivity of coal blends and charcoal fines aiming use in ironmaking. Materials Research 2016; 19(3): 594-601. http://dx.doi.org/10.1590/1980-5373-MR-2015-0705.

Barbosa ACCM, Chaix G, Davrieux F, Silva VR, Trugilho PF, Napoli A. Fecal NIR spectroscopy for the prediction of fixed carbon in Eucalyptus charcoal in steelmaking industries. In: Picking up good vibrations. NIR 2013: 16th International Conference on Near Infrared Spectroscopy; 2013; France. France: IRSTEA; 2013. p. 495-505.

Costa LR, Trugilho PF, Hein PRG. Evaluation and classification of Eucalypt charcoal quality by near infrared spectroscopy. Biomass and Bioenergy 2018; 114: 85-92. http://dx.doi.org/10.1016/j.biombioe.2018.02.017.

Davrieux F, Rousset PLA, Pastore TCM, Macedo LA, Quirino WF. Discrimination of native wood charcoal by infrared spectroscopy. Quimica Nova 2010; 33(5): 1093-1097. http://dx.doi.org/10.1590/S0100-40422010000500016.

Diesel KMF, Costa FSL, Pimenta AS, Lima KMG. Near-infrared spectroscopy and wavelength selection for estimating basic density in Mimosa tenuiflora [Willd.] Poiret wood. Wood Science and Technology 2014; 48(5): 949-959. http://dx.doi.org/10.1007/s00226-014-0652-1.

Fahey LM, Nieuwoudt MK, Harris PJ. Using near infrared spectroscopy to predict the lignin content and monosaccharide compositions of Pinus radiata wood cell walls. International Journal of Biological Macromolecules 2018; 113: 507-514. http://dx.doi.org/10.1016/j.ijbiomac.2018.02.105. PMid:29458099.

Majumder A, Jain R, Banerjee P, Barnwal J. Development of a new proximate analysis based correlation to predict calorific value of coal. Fuel 2008; 87(13-14): 3077-3081. http://dx.doi.org/10.1016/j.fuel.2008.04.008.

Monteiro TC, Silva RV, Lima JT, Hein PRG, Napoli A. Use of near infrared spectroscopy to distinguish carbonization processes and charcoal sources. Cerne 2010; 16(3): 381-390. http://dx.doi.org/10.1590/S0104-77602010000300014.

Muniz GIB, Carneiro ME, Nisgoski S, Ramirez MGL, Magalhães WLE. SEM and NIR characterization of four forest species charcoal. Wood Science and Technology 2013; 47(4): 815-823. http://dx.doi.org/10.1007/s00226-013-0539-6.

Nisgoski S, Muniz GIB, Marrone SR, Schardosin FZ, França RF. NIR and anatomy of wood and charcoal from Moraceae and Euphorbiaceae species. Ciência da Madeira 2015a; 6(3): 183-190. http://dx.doi.org/10.12953/2177-6830/rcm.v6n3p183-190.

Nisgoski S, Carneiro ME, Bolzon de Muñiz GI. Influencia de la granulometria de la muestra en la discriminación de especies de Salix por infrarrojo cercano. Maderas. Ciencia y Tecnología 2015b; 17(1): 195-204. http://dx.doi.org/10.4067/S0718-221X2015005000019.

Nunes CA, Freitas MP, Pinheiro ACM, Bastos SC. Chemoface: A novel free user-friendly interface for chemometrics. Journal of the Brazilian Chemical Society 2012; 23(11): 2003-2010. http://dx.doi.org/10.1590/S0103-50532012005000073.

Parikh J, Channiwala AS, Ghosal GK. A correlation for calculating HHV from proximate analysis of solid fuels. Fuel 2005; 84(5): 487-494. http://dx.doi.org/10.1016/j.fuel.2004.10.010.

Pasquini C. Near infrared spectroscopy: A mature analytical technique with new perspectives - A review. Analytica Chimica Acta 2018; 1026: 8-36. http://dx.doi.org/10.1016/j.aca.2018.04.004. PMid:29852997.

Protásio TP, Bufalino L, Tonoli GHD, Couto AM, Trugilho PF, Guimarães M Jr. Relação entre o poder calorífico superior e os componentes elementares e minerais da biomassa vegetal. Pesquisa Florestal Brasileira 2011; 31(66): 122-133. http://dx.doi.org/10.4336/2011.pfb.31.66.113.

Ramalho FMG, Hein PRG, Andrade JM, Napoli A. Potential of near-infrared spectroscopy for distinguishing charcoal produced from planted and native wood for energy purpose. Energy & Fuels 2017; 31(2): 1593-1599. http://dx.doi.org/10.1021/acs.energyfuels.6b02446.

Trugilho PF, Lima JT, Mori FA, Lino AL. Avaliação de clones de Eucalyptus para a produção de carvão vegetal. Cerne 2001; 7(2): 104-114.

Vale AT, Costa AF, Gonçalves JC, Nogueira M. Relação entre a densidade básica da madeira, o rendimento e a qualidade do carvão vegetal de espécies do cerrado. Revista Árvore 2001; 25(1): 89-95.

Vilela AO, Lora ES, Quintero QR, Vicintin RA, Souza TPS. A new technology for the combined production of charcoal and electricity through cogeneration. Biomass and Bioenergy 2014; 69: 222-240. http://dx.doi.org/10.1016/j.biombioe.2014.06.019.
 

5d7f94350e8825cd48bbebff floram Articles
Links & Downloads

FLORAM

Share this page
Page Sections