25APR

FLORAM receives Impact Factor

We are pleased to announce that FLORAM has received its first impact factor rating in the 2022 Journal Citation Reports (JCR).

Now FLORAM has the highest impact factor among Brazilian Forest Sciences journals.

Floresta e Ambiente
https://floram.org/article/doi/10.1590/2179-8087.039418
Floresta e Ambiente
Research Article Conservation of Nature

Sexual Systems of Plants in a Brazilian Montane Forest

Monique Perini; Henrique Machado Dias; Sustanis Horn Kunz

Downloads: 0
Views: 841

Abstract

ABSTRACT: In this study, vegetation reproduction has been investigated in order to understand aspects of speciation, structuring and composition of plant communities. Thus, we sought to characterize the frequency of sexual systems from species recorded in seed rain occurring in a tropical rainforest (Atlantic Forest) in Caparaó National Park, Espírito Santo State, Brazil. We collected the seed rain for twelve months, classified and recorded the species for: sexual system; pollination and dispersion syndrome; and fruit type. Then we measured the correlation between these attributes through correspondence analysis. Regarding sexual systems, 71% were hermaphrodites, 13% dioecious, and 11% monoecious. Hermaphrodites are best associated with pollination, dispersion and fruit types, represented by 65% of data variance. This study may contribute to elaborating management and conservation programs taking into account the interaction of plants with the local fauna.

Keywords

seed rain, reproductive ecology, woody layer, Caparaó National Park, Atlantic Forest

References

Alvares CA, Stape JL, Sentelhas PC, Gonçalves JLM, Sparovek G. Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift 2013; 22(6): 711-728. http://dx.doi.org/10.1127/0941-2948/2013/0507.

Barrett SCH. The evolution of plant reproductive systems: how often are transitions irreversible? Proceedings of the Royal Society 2013; 280(1765): 20130913. http://dx.doi.org/10.1098/rspb.2013.0913. PMid:23825207.

Bawa KS, Opler PA. Dioecism in tropical forest trees. Evolution; International Journal of Organic Evolution 1975; 29(1): 167-179. http://dx.doi.org/10.1111/j.1558-5646.1975.tb00824.x. PMid:28563295.

Bawa KS. Evolution of dioecy in flowering plants, Boston. Annual Review of Ecology and Systematics 1980; 11(1): 15-39. http://dx.doi.org/10.1146/annurev.es.11.110180.000311.

Bullock SH. Breeding systems in the flora of a tropical deciduous forest in Mexico. Biotropica 1985; 17(4): 287-301. http://dx.doi.org/10.2307/2388591.

Charlesworth D. Why are unisexual flowers associated with wind pollination and unspecialized pollinators? American Naturalist 1993; 141(3): 481-490. http://dx.doi.org/10.1086/285485.

Clark DA, Brown S, Kicklighter DW, Chambers JQ, Thomlinson JR, Ni J et al. Net primary production in tropical forests: an evaluation and synthesis of existing field data. Ecological Applications 2001; 11(4): 371-384. http://dx.doi.org/10.1890/1051-0761(2001)011[0371:NPPITF]2.0.CO;2.

Du Y, Mi X, Liu X, Chen L, Ma K. Seed dispersal phenology and dispersal syndromes in a subtropical broad-leaved forest of China. Forest Ecology and Management 2009; 258(7): 1147-1152. http://dx.doi.org/10.1016/j.foreco.2009.06.004.

Ellis AG, Johnson SD. Gender differences in the effects of floral spur length manipulation on fitness in a hermaphrodite orchid. International Journal of Plant Sciences 2010; 171(9): 1010-1019. http://dx.doi.org/10.1086/656351.

Flores S, Schemske DW. Dioecy and monoecy in the flora of Puerto Rico and the Virgin Islands: ecological Correlates. The Association for Tropical Biology and Conservation 1984; 16(2): 132-139. http://dx.doi.org/10.2307/2387845.

Goldberg EE, Kohn JR, Lande R, Robertson KA, Smith SA, Igic B. Species selection maintains self-incompatibility. Science 2010; 330(6003): 493-495. http://dx.doi.org/10.1126/science.1194513. PMid:20966249.

Goldberg EE, Otto SP, Vamosi JC, Mayrose I, Sabath N, Ming R et al. Macroevolutionary synthesis of flowering plant sexual systems. Evolution 2017; 71(4): 898-912. http://dx.doi.org/10.1111/evo.13181. PMid:28085192.

Hammer O, Harper DAT, Ryan PD. Paleontological statistics software package for education and data analysis. Palaeontologia Electronica 2001; 4(1): 1-9.

Henry IM, Akagi T, Tao R, Comai L. One hundred ways to invent the sexes: theoretical and observed paths to dioecy in plants. Annual Review of Plant Biology 2018; 69(1): 553-575. http://dx.doi.org/10.1146/annurev-arplant-042817-040615. PMid:29719167.

Hodgins KA, Barrett SCH. Natural selection on floral traits through male and female function in wild populations of the heterostylous daffodil Narcissus triandrus. Evolution. 2008; 62(7): 1751-1763. http://dx.doi.org/10.1111/j.1558-5646.2008.00404.x. PMid:18419752.

Igic B, Busch JW. Is self-fertilization an evolutionary dead end? The New Phytologist 2013; 198(2): 386-397. http://dx.doi.org/10.1111/nph.12182. PMid:23421594.

Jordan CY, Connallon T. Sexually antagonistic polymorphism in simultaneous hermaphrodites. Evolution 2014; 68(12): 3555-3569. http://dx.doi.org/10.1111/evo.12536. PMid:25311368.

Judd WS, Campbell CS, Kellogg EA, Stevens PF, Donoghue MJ. Sistemática vegetal: um enfoque filogenético. 3. ed. São Paulo: Artmed; 2009.

Machado IC, Lopes AV, Sazima M. Plant sexual systems and a revier of the breedings system studies in the Caatinga, a Brazilian Tropical Dry Florest. Annals of Botany 2006; 97(2): 277-287. http://dx.doi.org/10.1093/aob/mcj029. PMid:16377654.

Matallana G, Wendt T, Araujo DSD, Scarano FR. High abundance of dioecious plants in a tropical costal vegetation. American Journal of Botany 2005; 92(9): 1513-1519. http://dx.doi.org/10.3732/ajb.92.9.1513. PMid:21646169.

Ollerton J, Winfree R, Tarrant S. How many flowering plants are pollinated by animals? Oikos 2011; 120(3): 321-326. http://dx.doi.org/10.1111/j.1600-0706.2010.18644.x.

Pannell JR. Evolution of the mating system in colonizing plants. Molecular Ecology 2015; 24(9): 2018-2037. http://dx.doi.org/10.1111/mec.13087. PMid:25611580.

Perini M. Chuva de sementes e sistemas sexuais de espécies lenhosas em um trecho de Floresta Ombrófila Densa, Espírito Santo [dissertação]. Jerônimo Monteiro: Centro de Ciências Agrárias e Engenharias, Universidade Federal do Espírito Santo; 2016.

Peterson ML, Kay K. Mating system plasticity promotes persistence and adaptation of colonizing populations of hermaphroditic angiosperms. The American Society of Naturalists 2015; 185(1): 28-43. http://dx.doi.org/10.1086/679107. PMid:25560551.

Queenborough SA, Mazer SJ, Vamosi SM, Garwood NC, Valencia R, Freckleton RP. Seed mass, abundance and breeding system among tropical forest species: do dioecious species exhibit compensatory reproduction or abundances? Journal of Ecology 2009; 97(3): 555-566. http://dx.doi.org/10.1111/j.1365-2745.2009.01485.x.

Rivkin LR, Barrett CHS, Johnson TJM. The effects of plant sexual system and latitude on resistance to herbivores. American Journal of Botany 2018; 105(6): 977. http://dx.doi.org/10.1002/ajb2.1098. PMid:29917233.

Rymer PD, Johnson SD, Savolainen V. Pollinator behaviour and plant speciation: can assortative mating and disruptive selection maintain distinct floral morphs in sympatry? The New Phytologist 2010; 188(2): 426-436. http://dx.doi.org/10.1111/j.1469-8137.2010.03438.x. PMid:20738786.

Thomson JD, Wilson P. Explaining evolutionary shifts between bee and hummingbird pollination: convergence, divergence, and directionality. International Journal of Plant Sciences 2008; 199(1): 23-38. http://dx.doi.org/10.1086/523361.

Van der Niet T, Johnson SD. Phylogenetic evidence for pollinator-driven diversification of angiosperms. Trends in Ecology & Evolution 2012; 27(6): 353-361. http://dx.doi.org/10.1016/j.tree.2012.02.002. PMid:22445687.
 

5d7f93320e88253746bbec00 floram Articles
Links & Downloads

FLORAM

Share this page
Page Sections