Floresta e Ambiente
https://floram.org/article/doi/10.1590/2179-8087.038718
Floresta e Ambiente
Original Article Forest Management

Estimation of the Basic Wood Density of Native Species Using Mixed Linear Models

Jeferson Pereira Martins Silva; Márcia Rodrigues de Moura Fernandes; Anny Francielly Ataide Gonçalves; Isáira Leite e Lopes; Gilson Fernandes da Silva; Christian Dias Cabacinha

Downloads: 0
Views: 955

Abstract

ABSTRACT: This paper aimed to estimate the basic density (DB) of the wood of Cerrado species using mixed linear models. For performing the DBH measurement, the sampling of 334 individuals was carried out. By keeping the Pilodyn apparatus in the DBH position, two measurements were made on opposite sides. Further, for determining DB, the trees were knocked down, followed by removal of five wood discs at different height of stem positions. For this purpose, two sets of modeling alternatives were proposed, which take into account with and without random effects, employing species as a random effect grouping variable. Thus, it was elucidated that, for the estimation of DB, the mixed model that considered the random effects performed better as compared to the alternative model without random effects. The inclusion of random effects leads to the estimation of DB with high accuracy.

Keywords

Cerrado stricto sensu, wood quality, regression

References

American Society for Testing and Materials – ASTM. ASTM D-1037: standard methods of evaluating properties of wood-base fiber and particles materials. Philladelphia: ASTM; 2002.

Angiosperm Phylogeny Group – APG III. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Botanical Journal of the Linnean Society 2009; 161(2): 105-121. http://dx.doi.org/10.1111/j.1095-8339.2009.00996.x.

Baccini A, Goetz SJ, Walker WS, Laporte NT, Sun M, Sulla-Menashe D et al. Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps. Nature Climate Change 2012; 2(3): 182-185. http://dx.doi.org/10.1038/nclimate1354.

Bohora SB, Cao QV. Prediction of tree diameter growth using quantile regression and mixed-effects models. Forest Ecology and Management 2014; 319: 62-66. http://dx.doi.org/10.1016/j.foreco.2014.02.006.

Bueno-López SW, Bevilacqua E. Nonlinear mixed model approaches to estimating merchantable bole volume for Pinus occidentalis. iForest-Biogeosciences and Forestry 2012; 5(1): 247-254. http://dx.doi.org/10.3832/ifor0630-005.

Calegario N, Daniels RF, Souza AL, Maestri R. Estimativa do crescimento de povoamentos de Eucalyptus baseada em modelos lineares em multiníveis de efeito misto. Revista Árvore 2005; 29(2): 251-264. http://dx.doi.org/10.1590/S0100-67622005000200008.

Cao QV, Wang J. Calibrating fixed-and mixed-effects taper d.,ions. Forest Ecology and Management 2011; 262(4): 671-673. http://dx.doi.org/10.1016/j.foreco.2011.04.039.

Chave J, Andalo C, Brown S, Cairns MA, Chambers JQ, Eamus D et al. Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia 2005; 145(1): 87-99. http://dx.doi.org/10.1007/s00442-005-0100-x. PMid:15971085.

Chave J, Muller-Landau HC, Baker TR, Easdale TA, Steege H, Webb CO. Regional and phylogenetic variation of wood density across 2456 Neotropical tree species. Ecological Applications 2006; 16(6): 2356-2367. http://dx.doi.org/10.1890/1051-0761(2006)016[2356:RAPVOW]2.0.CO;2. PMid:17205910.

Chave J, Réjou-Méchain M, Búrquez A, Chidumayo E, Colgan MS, Delitti WB et al. Improved allometric models to estimate the aboveground biomass of tropical trees. Global Change Biology 2014; 20(10): 3177-3190. http://dx.doi.org/10.1111/gcb.12629. PMid:24817483.

Couto AM, Trugilho PF, Neves TA, Protásio TP, Sá VA. Modeling of basic density of wood from Eucalyptus grandis and Eucalyptus urophylla using nondestructive methods. Cerne 2013; 19(1): 27-34. http://dx.doi.org/10.1590/S0104-77602013000100004.

Cruz CR, Lima JT, Muniz GIB. Variação dentro das árvores e entre clones das propriedades físicas e mecânicas da madeira de híbridos de Eucalyptus. Scientia Forestalis 2003; 64(34): 33-47.

Deng XW, Zhang LY, Lei PF, Xiang WH, Yan WD. Variations of wood basic density with tree age and social classes in the axial direction within Pinus massoniana stems in Southern China. Annals of Forest Science 2014; 71(4): 505. http://dx.doi.org/10.1007/s13595-013-0356-y.

Djomo NA, Picard N, Fayolle A, Henry M, Ngomanda A, Ploton P et al. Tree allometry for estimation of carbon stocks in African tropical forests. Forestry 2016; 89(4): 446-455. http://dx.doi.org/10.1093/forestry/cpw025.

Fausto MA, Carneiro M, Antunes CMF, Pinto JA, Colosimo EA. O modelo de regressão linear misto para dados longitudinais: uma aplicação na análise de dados antropométricos desbalanceados. Cadernos de Saúde Pública 2008; 24(3): 513-524. http://dx.doi.org/10.1590/S0102-311X2008000300005. PMid:18327439.

Foelkel CEB, Brasil MAM, Barrichelo LEG. Métodos para determinação da densidade básica de cavacos para coníferas e folhosas. IPEF 1971; 2(3): 65-74.

Githiomi JK, Kariuki JG. Wood basic density of Eucalyptus grandis from plantations in central rift valley, Kenya: variation with age, height level and between sapwood and heartwood. Journal of Tropical Forest Science 2010; 22(3): 281-286.

Gómez-García E, Fonseca TF, Crecente Campo F, Almeida LR, Diéguez-Aranda U, Huang S et al. Height-diameter models for maritime pine in Portugal: a comparison of basic, generalized and mixed-effects models. iForest-Biogeosciences and Forestry 2016; 9(1): 72-78. http://dx.doi.org/10.3832/ifor1520-008.

Gouveia JF, Silva JAA, Ferreira RLC, Gadelha FHL, Lima LM Fo. Modelos volumétricos mistos em clones de Eucalyptus no Polo Gesseiro do Araripe, Pernambuco. Floresta 2015; 45(3): 587-598. http://dx.doi.org/10.5380/rf.v45i3.36844.

Groom JD, Hann DW, Temesgen H. Evaluation of mixed-effects models for predicting Douglas-fir mortality. Forest Ecology and Management 2012; 276: 139-145. http://dx.doi.org/10.1016/j.foreco.2012.03.029.

Guangyi M, Yujun S, Hao X, De-Miguel S. A mixed-effects model with different strategies for modeling volume in cunninghamia lanceolata plantations. PLoS One 2015; 10(10): e0140095. http://dx.doi.org/10.1371/journal.pone.0140095. PMid:26445505.

Henry M, Besnard A, Asante WA, Eshun J, Adu-Bredu S, Valentini R et al. Wood density, phytomass variations within and among trees, and allometric equations in a tropical rainforest of Africa. Forest Ecology and Management 2010; 260(8): 1375-1388. http://dx.doi.org/10.1016/j.foreco.2010.07.040.

Instituto Nacional de Meteorologia – INMET. Banco de dados meteorológicos para ensino e pesquisa [online]. Brasília: INMET; 2013 [cited 2013 Aug. 21]. Available from: http://www.inmet.gov.br/portal/

Jati SR, Fearnside PM, Barbosa RI. Densidade da madeira de árvores em savanas do norte da Amazônia brasileira. Acta Amazonica 2014; 44(1): 79-86. http://dx.doi.org/10.1590/S0044-59672014000100008.

Kimberley MO, Cown DJ, McKinley RB, Moore JR, Dowling LJ. Modelling variation in wood density within and among trees in stands of New Zealand-grown radiata pine. New Zealand Journal of Forestry Science 2015; 45(1): 22. http://dx.doi.org/10.1186/s40490-015-0053-8.

Köppen W, Geiger R. Klimate der erde. Gotha: Verlag Justus Perthes; 1928. Wall-map 150 cm × 200 cm.

Latorraca JVF, Albuquerque CEC. Efeito do rápido crescimento sobre as propriedades da madeira. Floresta e Ambiente 2000; 7(1): 279-291.

Leite HG, Binoti DHB, Oliveira N, Lopes PF, de Castro RR, Paulino EJ et al. Artificial neural networks for basic wood density estimation. Scientia Forestalis 2016; 44(109): 149-154.

Maniatis D, Saint André L, Temmerman M, Malhi Y, Beeckman H. The potential of using xylarium wood samples for wood density calculations: a comparison of approaches for volume measurement. iForest-Biogeosciences and Forestry. 2011; 4(4): 150-159. http://dx.doi.org/10.3832/ifor0575-004.

Mendonça AR, Carvalho SPC, Calegario N. Modelos hipsométricos generalizados mistos na predição da altura de Eucalyptus sp. Cerne 2015; 21(1): 107-115. http://dx.doi.org/10.1590/01047760201521011191.

Meneses VA, Trugilho PF, Calegario N, Leite HG. Efeito da idade e do sítio na densidade básica e produção de massa seca de madeira em um clone do Eucalyptus urophylla. Scientia Forestalis 2015; 43(105): 101-116.

Meng Q, Cieszewski CJ, Madden M, Borders B. A linear mixed-effects model of biomass and volume of trees using Landsat ETM+ images. Forest Ecology and Management 2007; 244(1-3): 93-101. http://dx.doi.org/10.1016/j.foreco.2007.03.056.

Nock CA, Geihofer D, Grabner M, Baker PJ, Bunyavejchewin S, Hietz P. Wood density and its radial variation in six canopy tree species differing in shade-tolerance in western Thailand. Annali di Botanica 2009; 104(2): 297-306. http://dx.doi.org/10.1093/aob/mcp118. PMid:19454592.

Oliveira GMV, Mello JM, Trugilho PF, Scolforo JRS, Altoé TF, Silva AJ No et al. Efeito do ambiente sobre a densidade da madeira em diferentes fitosionomias do Estado de Minas Gerais. Cerne 2012; 18(2): 345-352. http://dx.doi.org/10.1590/S0104-77602012000200020.

Osazuwa-Peters OL, Wright SJ, Zanne AE. Radial variation in wood specific gravity of tropical tree species differing in growth-mortality strategies. American Journal of Botany 2014; 101(5): 803-811. http://dx.doi.org/10.3732/ajb.1400040. PMid:24793318.

Özçelik R, Cao QV, Trincado G, Göçer N. Predicting tree height from tree diameter and dominant height using mixed-effects and quantile regression models for two species in Turkey. Forest Ecology and Management 2018; 419-420: 240-248. http://dx.doi.org/10.1016/j.foreco.2018.03.051.

Pádua FA, Trugilho PF, Thiersch CR, Vire MM, Silva JMS. Tamanho amostral para a estimativa da densidade básica em um clone híbrido de Eucalyptus sp. Revista do Instituto Florestal 2015; 27(1): 41-47. http://dx.doi.org/10.4322/rif.2015.004.

Plourde BT, Boukili VK, Chazdon RL. Radial changes in wood specific gravity of tropical trees: inter- and intraspecific variation during secondary succession. Functional Ecology 2015; 29(1): 111-120. http://dx.doi.org/10.1111/1365-2435.12305.

R Development Core Team. R: a language and environment for statistical computing [online]. Vienna: R Foundation for Statistical Computing; 2018 [cited 2018 July 4]. Available from: http://www.R-project.org/

Ribeiro FA, Zani J Fo. Variação da densidade básica da madeira em espécies/procedências de Eucalyptus spp. IPEF 1993; 1(46): 76-85.

Rodriguez HG, Maiti R, Kumari A, Sarkar NC. Variability in wood density and wood fibre characterization of woody species and their possible utility in northeastern Mexico. American Journal of Plant Sciences 2016; 7(07): 1139-1150. http://dx.doi.org/10.4236/ajps.2016.77109.

Ruslandi, Cropper WP Jr, Putz FE. Tree diameter increments following silvicultural treatments in a dipterocarp forest in Kalimantan, Indonesia: a mixed-effects modelling approach. Forest Ecology and Management 2017; 396: 195-206. http://dx.doi.org/10.1016/j.foreco.2017.04.025.

Saatchi SS, Harris NL, Brown S, Lefsky M, Mitchard ET, Salas W et al. Benchmark map of forest carbon stocks in tropical regions across three continents. Proceedings of the National Academy of Sciences of the United States of America 2011; 108(24): 9899-9904. http://dx.doi.org/10.1073/pnas.1019576108. PMid:21628575.

Sette CR Jr, Oliveira IR, Tomazello M Fo, Yamaji FM, Laclau JP. Efeito da idade e posição de amostragem na densidade e características anatômicas da madeira de Eucalyptus grandis. Revista Árvore 2012; 36(6): 1183-1190. http://dx.doi.org/10.1590/S0100-67622012000600019.

Silva CJ, Vale AT, Miguel EP. Densidade básica da madeira de espécies arbóreas de Cerradão no estado de Tocantins. Pesquisa Florestal Brasileira 2015; 35(82): 63-75. http://dx.doi.org/10.4336/2015.pfb.35.82.822.

Vale AT, Dias ÍS, Santana MAE. Relações entre propriedades químicas, físicas e energéticas da madeira de cinco espécies de Cerrado. Ciência Florestal 2010; 20(1): 137-145. http://dx.doi.org/10.5902/198050981767.

Wassenberg M, Chiu H-S, Guo W, Spiecker H. Analysis of wood density profiles of tree stems: incorporating vertical variations to optimize wood sampling strategies for density and biomass estimations. Trees 2015; 29(2): 551-561. http://dx.doi.org/10.1007/s00468-014-1134-7.

Xu H, Sun Y, Wang X, Fu Y, Dong Y, Li Y. Nonlinear mixed-effects (NLME) diameter growth models for individual China-fir (Cunninghamia lanceolata) trees in southeast China. PLoS One 2014; 9(8): e104012. http://dx.doi.org/10.1371/journal.pone.0104012. PMid:25084538.

Zhang XQ, Lei YC, Liu XZ. Modeling stand mortality using Poisson mixture models with mixed-effects. Forest-Biogeosciences and Forestry 2015; 8(3): 333-338. http://dx.doi.org/10.3832/ifor1022-008.
 

5d7f91950e8825ca41bbebff floram Articles
Links & Downloads

FLORAM

Share this page
Page Sections