Floresta e Ambiente
Floresta e Ambiente
Review Article Wood Science and Technology

Do the Growing Conditions of Trees Influence the Wood Properties?

Maria Fernanda Vieira Rocha; Taís Regina Lima Abreu Veiga; Bruno Charles Dias Soares; Ana Clara Caxito de Araújo; Ana Márcia Macedo Carvalho; Paulo Ricardo Gherardi Hein

Downloads: 0
Views: 34


ABSTRACT: Currently, there is a little and sparse information about how the growing conditions influence the spatial variation of wood along the stem. Thus, the aim of this study was to compile the knowledge from literature in a manuscript for better understanding to what extent the growing conditions influence the spatial variation of wood properties in Eucalyptus plantations. The wood characteristics may present variations in their properties and can be caused by both genetic and environmental factors. However, how genetic and environmental factor acts on wood variation along the trunk is still unclear. Another point is that even with new genetic breeding programs, the mechanical properties of wood have not been considered in these programs, since the selection of new material is always based on the growing rate, cellulose and lignin content and wood density.


wood quality, spatial variation, NIR, resonance


Alcorn PJ, Pyttel P, Bauhus J, Smith RGB, Thomas D, James R et al. Effects of initial planting density on branch development in 4-year-old plantation grown Eucalyptus pilularis and Eucalyptus cloeziana trees. Forest Ecology and Management 2007; 252(1-3): 41-51. http://dx.doi.org/10.1016/j.foreco.2007.06.021.

Andrade CR, Trugilho PF, Napoli A, Vieira RS, Lima JT, Sousa LC. Estimation of the mechanical properties of wood from Eucalyptus urophylla using near infrared spectroscopy. Revista Ceres 2010; 16(3): 291-298.

Antony F, Schimleck LR, Daniels RF, Clark A 3rd, Borders BE, Kane MB et al. Whole-tree bark and wood properties of Loblolly pine from intensresively managed plantations. Forest Science 2015; 61(1): 55-66. http://dx.doi.org/10.5849/forsci.12-030.

Baillères H, Davrieux F, Ham-Pichavant F. Near infrared analysis as a tool for rapid screening of some major wood characterists in a Eucalyptus breeding program. Annals of Forest Science 2002; 59(5-6): 479-490. http://dx.doi.org/10.1051/forest:2002032.

Balloni EA. Influência do espaçamento de plantio na produtividade florestal. Silvicultura 1983; 8(31): 588-592.

Bendtsen BA. Properties of wood from improved and intensively managed trees. Forest Products Journal 1978; 28(10), 61-72.

Binkley D, Stape JL, Ryan MG, Barnard H, Fownes J. Age- related decline in forest ecosystem growth: an individual- tree, stand- structure hypothesis. Ecosystems (New York, N.Y.) 2002; 5(1): 58-67. http://dx.doi.org/10.1007/s10021-001-0055-7.

Brancheriau L, Baillères H. Use of the partial least squares method with acoustic vibration spectra as a new grading technique for structural timber. Holzforschung 2003; 57(6): 644-652. http://dx.doi.org/10.1515/HF.2003.097.

Bucur V. Acoustics of wood. Boca Raton: CRC Press, 1995. 284 p.

Burdzik WMG, Nkwera PD. Transverse vibration tests for prediction of stiffness and strength properties of full size Eucalyptus grandis. Forest Products Journal 2002; 52: 6.

Calil C Jr, Miná AJS. Vibração transversal: um método eficiente para classificação de peças estruturais de madeira. Revista Brasileira de Engenharia Agrícola e Ambiental 2003; 7(2): 335-338. http://dx.doi.org/10.1590/S1415-43662003000200025.

Candian M, Sales A. Aplicação das técnicas não-destrutivas de ultrassom, vibração transversal e ondas de tensão para avaliação de madeira. Revista Ambiente Construído 2009; 9(4): 83-98.

Carneiro ME, Magalhães WLE, Muñiz GIB, Schimleck LR. Near infrared spectroscopy and chemometrics for predicting specific gravity and flexural modulus of elasticity of Pinus spp. veneers. Journal of Near Infrared Spectroscopy 2010; 18(6): 481-489. http://dx.doi.org/10.1255/jnirs.911.

Carreira MR, Candian M. Teste de um equipamento para classificação de peças estruturais de madeira pela técnica da vibração transversal. Revista Ciências Exatas e da Terra 2008; 29(1), 3-14.

Chafe SC. Growth stress in trees. Australian Forest Research 1979; 9(3): 203-223.

Chauhan SS, Entwistle KM, Walker CF. Search for a relationship between stress wave velocity and internal stresses in eucalypts and radiata pine. Holzforschung 2007; 61(1): 60-64. http://dx.doi.org/10.1515/HF.2007.010.

Chen S, Arnold R, Li Z, Li T, Zhou G, Wu Z et al. Tree and stand growth for clonal E. urophylla x grandis across a range of initial stockings in southern China. New Forests 2011; 41(1): 95-112. http://dx.doi.org/10.1007/s11056-010-9213-0.

Clark A III, Saucier JR. Influence of plant density, intensive culture, geographic location, and species on juvenile wood formation in Southern Pine. Georgia Forest Research Paper, 1991; 85: 1-13.

Cockerham ST. Irrigation and planting density affect river red gum growth. California Agriculture 2004; 58(1): 40-43. http://dx.doi.org/10.3733/ca.v058n01p40.

Couto AM, Trugilho PF, Neves TA, Protásio TP, Sá VA. Modeling of basic density of wood from Eucalyptus grandis and Eucalyptus urophylla using nondesctructive methods. Revista Ceres 2013; 19(1): 27-34.

Dias AF Jr, Santos PV, Pace JHC, Carvalho AM, Latorraca JV. Caracterização da madeira de quatro espécies florestais para uso em movelaria. Revista Ciência da Madeira 2013; 4(1): 93-107. http://dx.doi.org/10.12953/2177-6830.v04n01a08.

Donaldson L. Microfibril angle: measurement, variation and relationships – a review. IAWA Journal 2008; 29(4): 345-386. http://dx.doi.org/10.1163/22941932-90000192.

Downes G, Evans R, Wimmer R, French J, Farrington A, Lock P. Wood, pulp and handsheet relationships in plantation grown Eucalyptus globulus. Appita Journal 2003; 56: 221-228.

Downes G, Worledge D, Schimleck L, Harwood C, French J, Beadle C. The effect of growth rate and irrigation on the basic density and kraft pulp yield of Eucalyptus globulus and E. nitens. New Zealand Journal of Forestry Science 2006; 51: 13-22.

Downes GM, Drew D, Battaglia M, Schulze D. Measuring and modelling stem growth and wood formation: an overview. Dendrochronologia 2009; 27(2): 147-157. http://dx.doi.org/10.1016/j.dendro.2009.06.006.

Downes GM, Harwood CE, Wiedemann J, Ebdon N, Bond H, Meder R. Radial variation in kraft pulp yield and celulose content in Eucalyptus globulus wood across three contrasting sites predicted by near infrared spectroscopy. Canadian Journal of Forest Research 2012; 42(8): 1577-1586. http://dx.doi.org/10.1139/x2012-083.

Downes GM, Nyakeuengama JG, Evans R, Northway R, Blakemore P, Dickson RL et al. Relationship between wood density, microfibril angle and stiffness in thinned and fertilized Pinus radiata. IAWA Journal 2002; 23(3): 253-265. http://dx.doi.org/10.1163/22941932-90000302.

Downes GM, Raymond CA. Appendix 1: wood density variation in plantation eucalypts. In: Downes GM, Hudson IL, Raymond CA, Dean GH, Michell AJ, Schimleck LR et al. Sampling plantation eucalypts for wood and fiber properties. Melbourne: CSIRO Publishing; 1997. p. 88-98. http://dx.doi.org/10.1071/9780643105287.

Downes GM, Touza M, Harwood C, Vietheer MW. NIR detection of non-recoverable colapse in sawn boards of Eucalyptus globulus. European Journal of Wood and Wood Products 2014; 72(5): 563-570.

Drew DM, Downes GM, Battaglia M. CAMBIUM, a process-based model of daily xylem development in Eucalyptus. Journal of Theoretical Biology 2010; 264(2): 395-406. http://dx.doi.org/10.1016/j.jtbi.2010.02.013. PMid:20167220.

Evans JW, Senft JF, Green DW. Juvenile wood effect in red alder: analysis of physical and mechanical data to delineate juvenile and mature wood zones. Forest Products Journal 2000a; 50(7-8): 75-87.

Evans R, Stringer S, Kibblewhite RP. Variation of microfibril angle, density and fiber orientation in twenty-nine Eucalyptus nitens trees. Appita Journal 2000b; 53: 450-457.

Forrester DI, Baker TG. Growth responses to thinning and pruning in Eucalyptus globulus, Eucalyptus nitens, and Eucalyptus grandis plantations in southeastern Australia. Canadian Journal of Forest Research 2012; 42(1): 75-87. http://dx.doi.org/10.1139/x11-146.

Forrester DI, Medhurst JL, Wood M, Beadle CL, Valencia JC, Harwood C. The effect of solid-wood silviculture on growth, form and wood properties in Eucalyptus plantations: an Australian perspective. Melbourne: Forest & Wood Products Australia; 2013. 99 p.

French J, Conn AB, Batchelor WJ, Parker IH. The effect of fiber fibril angle on some handsheet mechanical properties. Appita Journal 2000; 53(3): 210-226.

Fujimoto T, Yamamoto H, Tsuchikawa S. Estimation of wood stiffness and strength properties of hybrid larch by near infrared spectroscopy. Applied Spectroscopy 2008; 61(8): 882-888. http://dx.doi.org/10.1366/000370207781540150. PMid:17716408.

Garcia CH, Corradine L, Alvarenga SF. Comportamento florestal do Eucalyptus grandis e Eucalyptus saligna em diferentes espaçamentos. Piracicaba: IPEF; 1991. 8 p.

Gindl W, Schöberl T. The significance of the elastic modulus of wood cell walls obtained from nanoindentation measurements. Composites Part A 2004; 35: 1345-1349.

Gouvêa AFG, Trugilho PF, Gomide JL, Silva JRM, Andrade CR, Alves ICN. Determinação da densidade básica da madeiras de Eucalyptus por diferentes métodos não destrutivos. Revista Árvore 2011; 35(2): 349-358.

Haines DW, Leban J-M, Herbé C. Determination of Young’s modulus for spruce, fir and isotropic materials by the resonance flexure method with comparisons to static flexure and other dynamic methods. Wood Science and Technology 1996; 30: 253-263. http://dx.doi.org/10.1007/BF00229348.

Haines DW, Leban JM. Evaluation of the MOE of Norway spruce by the resonance flexure method. Forest Products Journal 1997; 47: 10.

Halabe UB, Bidigalu GM, Gangarao HVS, Ross RJ. Nondestructive evaluation of green wood using stress wave and transverse vibration techniques. Materials Evaluation 1997; 55(9): 1013-1018.

Hapla F, Oliver-Villanueva JV, González-Molina JM. Effect of silvicultural management on wood quality and timber utilisation of Cedrus atlântica in the European mediterranean área. Holz als Roh- und Werkstoff 2000; 58(1-2): 1-8. http://dx.doi.org/10.1007/s001070050377.

Harrington TB, Harrington CA, Debell DS. Effects of planting spacing and site quality on 25-year growth and mortality relationships of Douglas-fir (Pseudotsuga menziesii var. menziesii). Forest Ecology and Management 2009; 258(1): 18-25. http://dx.doi.org/10.1016/j.foreco.2009.03.039.

Hart JF. A review of the effects of silviculture on wood quality. Columbia: The University of British Columbia; 2010. Wood 493. 27 p.

Hein PRG, Lima JT, Chaix G. Robustness of models based on near infrared spectra to predict the basic density in Eucalyptus urophylla wood. Journal of Near Infrared Spectroscopy 2009a; 17(3): 141-150. http://dx.doi.org/10.1255/jnirs.833.

Hein PRG, Campos ACM, Lima JT, Trugilho PF, Chaix G. Estimativa da resistência e da elasticidade à compressão paralela às fibras da madeira de Eucalyptus grandis e E. urophylla usando a espectroscopia no infravermelho próximo. Scientia Forestalis 2009b; 37(82): 119-129.

Hein PRG, Brancheriau L, Lima JT, Rosado AM, Gril J, Chaix G. Clonal and environmental variation of structural timbres of Eucalyptus for growth, density and dynamic properties. Revista Ceres 2010a; 16: 74-81.

Hein PRG, Lima JT, Chaix G. Effects of sample preparation on NIR spectroscopic estimation of chemical properties of Eucalyptus urophylla S. T. Blake wood. Holzforschung 2010b; 64: 45-54.

Hein PRG, Brancheriau L, Trugilho PF, Lima JT, Chaix G. Resonance and near infrared spectroscopy for evaluating dynamic wood properties. Journal of Near Infrared Spectroscopy 2010c; 18(6): 1-12. http://dx.doi.org/10.1255/jnirs.907.

Hein PRG, Lima JT, Gril J, Rosado AM, Brancheriau L. Resonance of scantlings indicates the stiffness even of small specimens of Eucalyptus from plantations. Wood Science and Technology 2011; 41: 621-635.

Hein PRG, Chaix G, Clair B, Brancheriau L, Gril J. Spatial variation of wood density, stiffness and microfibril angle along Eucalyptus trunks grown under contrasting growth conditions. Trees (Berlin) 2016; 30(3): 871-882. http://dx.doi.org/10.1007/s00468-015-1327-8.

Hodge GR, Woodbridge WC. Global near infrared models to predict lignin and cellulose content of pine wood. Journal of Near Infrared Spectroscopy 2010; 18(6): 367-380. http://dx.doi.org/10.1255/jnirs.902.

Hoibo O, Vestol GI. Modelling the variation in modulus of elasticity and modulus of rupture of Scots pine round timber. Canadian Journal of Forest Research 2010; 40(4): 668-678. http://dx.doi.org/10.1139/X10-021.

Huang C-L, Lindstrom H, Nakada R, Ralston J. Cell wall structure and wood properties determined by acoustics - a selective review. Holz als Roh- und Werkstoff 2003; 61(5): 321-335. http://dx.doi.org/10.1007/s00107-003-0398-1.

Husch B, Miller CI, Beers TW. Forest mensuration. New York: Ronald Press; 1972. 410 p.

Ilic J. Relationship among the dynamic and static elastic properties of air-dry Eucalyptus delegatensis R. Baker. Holz als Roh- und Werkstoff 2001; 59(3): 169-175. http://dx.doi.org/10.1007/s001070100198.

Innes T. Processing and wood properties of four ages of Eucalyptus obliqua. Holz als Roh- und Werkstoff 2007; 65(3): 197-200. http://dx.doi.org/10.1007/s00107-006-0138-4.

Inoue MT, Figueiredo A Fo, Lima R. Influência do espaçamento de crescimento na altura e diâmetro de Pinus taeda L. Scientia Forestalis 2011; 39(91): 377-385.

Ishiguri F, Kasai S, Yokotá S, Iizuka K, Yoshizawa N. Wood quality of Sugi (Cryptomeria japônica) grown at four initial spacings. IAWA Journal 2005; 26(3): 375-386. http://dx.doi.org/10.1163/22941932-90000122.

Jones PD, Schimleck LR, Peter GF, Daniels RF, Clark A 3rd. Nondestructive estimation of wood chemical composition of sections of radial wood strips by diffuse reflectance near infrared spectroscopy. Wood Science and Technology 2006; 40(8): 709-720. http://dx.doi.org/10.1007/s00226-006-0085-6.

Joza LA, Middleton GR. Wood quality attributes and their practical implications. Vol. 34. Vancouver: Forintek Canada Corp; 1994. p. 1-42.

Kang K, Zhang SY, Mansfield SD. The effects of initial spacing on wood density, fiber and pulp properties in jack pine (Pinus banksiana Lamb.). Holzforschung 2005; 58(5): 455-463.

Kollmann FFP, Cotê WA. Principles of wood science and technology. Vol. 1. Berlim: Springer-Verlag; 1968. 592 p. http://dx.doi.org/10.1007/978-3-642-87928-9.

Larson PR, Kretschmann DE, Clark A 3rd, Isebrands JG. Formation and properties of juvenile wood in southern pines: a synopsis. Madison: U.S. Department of Agriculture, Forest Service, Forest Products Laboratory; 2001. 42 p. General Technical Report. FPL-GTR-129. http://dx.doi.org/10.2737/FPL-GTR-129.

Larson PR. Auxin gradients and the regulation of cambial activity. In: Kozlowski TT, editors. Tree growth. New York: Ronald Press; 1962.

Leite ERS, Hein PRG, Souza TM, Rabelo GF. Estimation of the dynamic elastic properties of wood from Copaifera langsdorffii Desf using resonance analysis. Revista Ceres 2012; 18(1): 41-47.

Leite HG, Nogueira GS, Moreira AM. Efeito do espaçamento e da idade sobre variáveis de povoamentos de Pinus taeda L. Revista Árvore 2006; 4(30): 603-612. http://dx.doi.org/10.1590/S0100-67622006000400013.

Leles PSS, Reis GG, Reis MGF, Morais EJ. Relações hídricas e crescimento de árvores de Eucalyptus camaldulensis e Eucalyptus pellita sob diferentes espaçamentos na região de cerrado. Revista Árvore 1998; 22(1): 41-50.

Li Y, Turnblom EC, Briggs DG. Effects of density control and fertilization on growth and yield of young Douglas-fir plantations in the Pacific Northwest. Canadian Journal of Forest Research 2007; 37(2): 449-461. http://dx.doi.org/10.1139/X06-234.

Lima IL, Garcia R, Longui EL, Florsheim SMB. Dimensões anatômicas da madeira de Tectona grandis Linn. em função do espaçamento e da posição radial do tronco. Scientia Forestalis 2011; 39(89): 61-68.

Lima JT, Breese MC, Cahalan CM. Genotype-environment interaction in wood basic density of Eucalyptus clones. Wood Science and Technology 2000; 34(3): 197-206. http://dx.doi.org/10.1007/s002260000041.

Little CHA, Pharis RP. Hormonal control of radial and longitudinal growth in the tree stem. In: Gartner BL, editor. Plant stems: physiology and functional morphology. San Diego: Academic Press; 1995. http://dx.doi.org/10.1016/B978-012276460-8/50015-1.

Malan FS, Hoon M. Effect of initial spacing and thinning on some wood properties of Eucalyptus grandis. South African Forestry Journal 1992; 163(1): 13-20. http://dx.doi.org/10.1080/00382167.1992.9629362.

Malhotra VM, Sivasundaram V. Resonant frequency methods. In Malhotra VM, Carino NJ, editors. Handbook on nondestructive testing of concrete. 2nd ed. Boca Raton: CRC Press; 2004. p. 7.1-7.21.

Malik MFEI, Abdelgadir AY. Effect of growth rate on wood density of Eucalyptus camaldulensis wood of Coppice origin grown in White Nile State Sudan. Journal of Forest Products & Industries 2015; 4(3): 86-93.

Malimbwi RE, Persson A, Iddi S, Chamshama SAO, Mwihomeke ST. Effects of spacing on yield and some wood properties of Cupressus lusitânica at Rongai, Northern Tanzania. Forestry 1992; 65(1): 73-82. http://dx.doi.org/10.1093/forestry/65.1.73.

Marten G, Shenk J, Barton F III. Near infrared reflectance spectroscopy (NIRS): analysis of forage quality. Maryland: USDA Agriculture Research Service; 1985. (Handbook; no. 643).

Medhurst J, Downes G, Ottenschlaeger M, Harwood C, Evans R, Beadle C. Intra-specific competition and the radial development of wood density, microfibril angle and modulus of elasticity in plantation-grown Eucalyptus nitens. Trees (Berlin) 2012; 26(6): 1771-1780. http://dx.doi.org/10.1007/s00468-012-0746-z.

Megraw RA. Wood quality factors in loblolly pine. The influence of tree age, position in tree, and cultural practice on wood specific gravity, fiber length and fibril angle. Atlanta: TAPPI Press, Technology Park; 1985.

Moore JR, Cown DJ, McKinley RB. Effects of stand density and seedlot on three wood properties of young radiate pine grown at a dry-land site in New Zealand. New Zealand Journal of Forestry Science 2015; 45(4): 1-15.

Moulin JC, Arantes MDC, Vidaurre GB, Paes JB, Carneiro ACO. Efeito do espaçamento, da idade e da irrigação nos componentes químicos da madeira de eucalipto. Revista Árvore 2015; 39(1): 199-208. http://dx.doi.org/10.1590/0100-67622015000100019.

Naji HR, Bakar ES, Soltani M, Ebadi SE, Abdul-Hamid H, Javad SKS et al. Effect of Initial planting density and tree features on growth, wood density, and anatomical properties from Hevea brasiliensis. Trial Plantation 2014; 64(1-2): 41-47.

Neilsen WA, Gerrand AM. Growth and branching habit of Eucalyptus nitens at different spacing and the effect of final crop selection. Forest Ecology and Management 1999; 123(2-3): 217-229. http://dx.doi.org/10.1016/S0378-1127(99)00044-4.

Nicholson JE, Hillis WE, Ditchburne N. Some tree growth–wood property relationships of eucalypts. Canadian Journal of Forest Research 1975; 5(3): 424-432. http://dx.doi.org/10.1139/x75-059.

Nogueira M, Ballarin AW. Efeito da idade na qualificação mecânica da madeira serrada de Eucalyptus sp. com uso de ensaios não-destrutivos. Revista Energia na Agricultura 2008; 23(3): 74-94.

Oliveira JTS, Silva JC. Variação radial da retratibilidade e densidade básica da madeira de Eucalyptus saligna Sm. Revista Árvore 2003; 27(3): 381-385. http://dx.doi.org/10.1590/S0100-67622003000300015.

Oliveira SN No, Reis GG, Reis MDGF, Leite HG, Neves JCL. Crescimento e distribuição diamétrica de Eucalyptus camaldulensis em diferentes espaçamentos e níveis de adubação na região de Cerrado de Minas Gerais. Floresta 2010; 40(4): 755-762.

Panshin AJ, De Zeeuw C. Textbook of wood technology. 4th ed. New York: Mc Graw Hill; 1980. 722 p.

Pasquini C. Near infrared spectroscopy: fundamentals, practical aspects and analytical applications. Journal of the Brazilian Chemical Society 2003; 14(2): 198-219. http://dx.doi.org/10.1590/S0103-50532003000200006.

Passialis C, Kiriazakos A. Juvenile and mature wood properties of naturally-grown fir trees. Holz als Roh- und Werkstoff 2004; 62(6): 476-478. http://dx.doi.org/10.1007/s00107-004-0525-7.

Paul BH. The application of silviculture in controlling the specific gravity of wood. Washington: USDA Forest Service; 1963. (Technical Bulletin; no. 1288).

Pereira BLC, Oliveira AC, Carvalho AML, Carneiro ACO, Santos LC, Vital BR. Quality of wood and charcoal from Eucalyptus clones for ironmaster use. Journal of Forestry Research 2012; 2012: 1-8. http://dx.doi.org/10.1155/2012/523025.

Pliura A, Yu Q, Zhang SY, Mackay J, Perinet P, Bousquet J. Variation in wood density and shrinkage and their relationship to growth of selected young poplar hybrid crosses. Forest Science 2005; 51(5): 472-482.

Raymond CA, Muneri A. Nondestructive sampling of Eucalyptus globulus and E. nitens for wood properties.I. Basic density. Wood Science and Technology 2001; 35(1-6): 27-39. http://dx.doi.org/10.1007/s002260000078.

Raymond CA, Schimleck LR, Muneri A, Michell AJ. Non destructive sampling of Eucalyptus globulus and E. nitens for wood properties. III. Predicted pulp yield using near infrared reflectance analysis. Wood Science and Technology 2001; 35(3): 203-215. http://dx.doi.org/10.1007/s002260100092.

Raymond CA. Genetics of Eucalyptus wood properties. Annals of Forest Science 2002; 59(5-6): 525-531. http://dx.doi.org/10.1051/forest:2002037.

Robinson AR, Mansfield SD. Rapid analysis of poplar lignin monomer composition by a revised thioacidolysis procedure and NIR-based prediction modeling. The Plant Journal 2009; 58(4): 706-714. http://dx.doi.org/10.1111/j.1365-313X.2009.03808.x. PMid:19175772.

Rocha MFV, Vital BR, Carneiro ACO, Carvalho AMML, Cardoso MT, Hein PRG. Effects of plant spacing on the physical, chemical and energy properties of Eucalyptus wood and bark. Journal of Tropical Forest Science 2016; 28(3): 243-248.

Ross RJ, Pellerin RF. Nondestructive testing for assessing wood members in structures: a review. Madison: U.S. Department of Agriculture, Forest Service, Forest Products Laboratory; 1994. 40 p. General Technical Report. FPL-GTR-70. http://dx.doi.org/10.2737/FPL-GTR-70.

Sanquetta CR, Mora AL, Borsato R, Vidal MAS, Peixoto AM, Chiaranda R. Efeito do espaçamento de plantio em reflorestamentos - II. Pinus taeda L. em Jaguariaíva, PR. Revista Acadêmica: Ciências Agrárias e Ambientais 2003; 1(1): 55-61. http://dx.doi.org/10.7213/cienciaanimal.v1i1.14889.

Santos RCD, Carneiro ADCO, Castro AFM, Castro RVO, Bianche JJ, Souza MM et al. Correlation of quality parameters of wood and charcoal of clones of Eucalyptus. Scientia Forestalis 2011; 39(90): 221-230.

Savidge RA. Tree growth and wood quality. In: Barnett JR, Jeronimidis G, editors. Wood quality and its biological basis. New York: CRC Press, Blackwell Publishing; 2003. p. 1-29.

Savidge RA. Xylogenesis, genetic and environmental regulation - a review. IAWA Journal 1996; 17(3): 269-310.

Serpa PN, Vital BR, Lucia MD, Pimenta AS. Avaliação de algumas propriedades da madeira de Eucalyptus grandis, Eucalyptus saligna e Pinus elliottii. Revista Árvore 2003; 27(5): 723-733. http://dx.doi.org/10.1590/S0100-67622003000500015.

Shan-qing L, Feng F. Comparative study on three dynamic modulus of elasticity and static modulus of elasticity for Lodgepole pine lumber. Journal of Forestry Research 2007; 18(4): 309-312. http://dx.doi.org/10.1007/s11676-007-0062-4.

Souza GM, Tiné MAS, Buckeridge MS. Ajustando os botões: como as plantas lidam com o aumento do CO2 atmosférico? In: Buckeridge MS, editor. Biologia & mudanças climáticas no Brasil. São Paulo: Rima; 2008. cap. 6, p. 101-113.

Stape JL, Binkley D. Insights from full-rotation Nelder spacing trials with Eucalyptus in São Paulo, Brazil. South Forests 2010; 72(2): 90-97.

Sundberg B, Uggla C, Tuominen H. Cambial growth and auxin gradients. In: Savidge R, Barnett JR, Napier R, editors. Cell and molecular biology of wood formation. Oxford: Bios Scientific Publishers Ltd; 2000. 169 p.

Targa LA, Ballarin AW, Biaggioni MAM. Avaliação do módulo de elasticidade da madeira com uso de método não-destrutivo de vibração transversal. Revista Engenharia Agrícola 2005; 25(2): 291-299. http://dx.doi.org/10.1590/S0100-69162005000200001.

Taylor FW. Variation in the anatomical properties of South African grown Eucalyptus grandis. Appita 2010; 27(3): 171-184.

Tong QJ, Fleming RL, Tanguay F, Zhang SY. Wood and lumber properties from unthinned and precommercially thinned black spruce plantations. Wood and Fiber Science 2009; 41(2): 168-179.

Trugilho PF, Bianchi ML, Rosado SC, Lima JT. Qualidade da madeira de clones de espécies e híbridos naturais de Eucalyptus. Scientia Forestalis 2007;(73): 55-62.

Wang X, Ross RJ, Mattson JA, Erickson JR, Forsman JW, Geske EA et al. Nondestructive evaluation techniques for assessing modulus of elasticity and stiffness of small-diameter logs. Forest Products Journal 2002; 52: 2.

Watson P, Garner C, Robertson R, Reath S, Gee W, Hunt K. The effects of initial tree spacing on the fiber properties of plantation-grown coastal western hemlock. Canadian Journal of Forest Research 2003; 33(12): 2460-2468. http://dx.doi.org/10.1139/x03-171.

Wentzel-Vietheer M, Washusen R, Downes GM, Harwood C, Ebdon N, Ozarska B et al. Prediction of nonrecoverable collapse in Eucalyptus globulus from near infrared scanning of radial wood samples. European Journal of Wood and Wood Products 2013; 71(6): 755-768. http://dx.doi.org/10.1007/s00107-013-0735-y.

Williams P, Norris K, editors. Near-infrared technology in the agricultural and food industrial. 2nd ed. St. Paul: American Association of Cereal Chemistry, Inc.; 2001.

Yang BZ, Seale RD, Shmulsky R, Dahlen J, Wang X. Comparison of nondestructive testing methods for evaluating NO.2 Southern Pine lumber: part A, modulus of elasticity. Wood and Fiber Science 2015; 47(4): 375-384.

Yang JL, Evans R. Prediction of MOE of eucalypt wood from microfibril angle and density. Holz als Roh- und Werkstoff 2003; 61(6): 449-452. http://dx.doi.org/10.1007/s00107-003-0424-3.

Yang KC, Hazenberg G. Impact of spacing on tracheid lenght, relative density, and growth rate of juvenile wood and mature wood in Picea mariana. Canadian Journal of Forest Research 1994; 24(5): 996-1007. http://dx.doi.org/10.1139/x94-130.

Zobel B, Van Buijtenen B. Wood variation: its causes and control. New York: Springer; 1989. 363 p. http://dx.doi.org/10.1007/978-3-642-74069-5.

Zobel B. Silvicultural effects on wood properties. IPEF International 1992; 2: 31-38.

Zobel B. Wood quality from fast-grown plantations. Tappi Journal 1981; 64(1)

Zobel BJ, Jett JB. Genetics of wood production. Berlin: Springer; 1995. 337 p. http://dx.doi.org/10.1007/978-3-642-79514-5.

5d7fa0a60e8825f26bbbec02 floram Articles
Links & Downloads


Share this page
Page Sections