Floresta e Ambiente
https://floram.org/article/doi/10.1590/2179-8087.035018
Floresta e Ambiente
Original Article Conservation of Nature

Flora and Vegetation in Different Physiognomies of a Mussununga in Southeastern Brazil

Elisa Silva Candido; Marilia Beatriz Castro Ramos; Rafael Martins; Maria Cristina Teixeira Braga Messias

Downloads: 0
Views: 11

Abstract

ABSTRACT: Mussununga is an understudied ecosystem within the Atlantic Forest domain, in sandy spodosol lowlands from Bahia to Espírito Santo. Its physiognomy varies from grassland to forest, with a transitional savannic area. We evaluated the life-form spectra differences between the grassland and savanna Mussunungas and its relationship with the depth of a soil impermeable layer (ortstein). The study area is located in the municipality of Linhares, Espírito Santo State. Ten plots were settled in each physiognomy. The floristic and vegetation spectra (accordingly to Raunkiaer) were compared using the G-test. A total of 35 species into three life-forms were found: Phanerophytes, hemicryptophytes and cryptophytes. The floristic spectra were similar in both physiognomies, with a greater richness of phanerophytes. However, the vegetation spectra of the two areas were different. Phanerophytes dominated in the savannas (where ortstein is deeper), while the shallower ortstein of the grasslands favored hemicryptophytes.

Keywords

biological spectra, flooding areas, life-forms, plant-soil relationship, tropical forests

References

Araújo DD, Pereira OJ, Peixoto AL. Campos nativos at the Linhares Forest Reserve, Espírito Santo, Brazil. In: Thomas W, editor. The Atlantic Coastal Forest of Northeastern Brazil. New York: The New York Botanical Garden; 2008. p. 365-388.

Barroso ALP, Colodete CM, Gomes LC. Diversidade do sub-bosque e cobertura da serrapilheira em mosaico de Mata de Tabuleiro e Mussununga na Reserva Natural Vale, Linhares, Espírito Santo, Brasil. Natureza Online 2014; 12: 245-249.

Batalha MA, Martins FR. Floristic, frequency and vegetation life-form spectra of a cerrado site. Brazilian Journal of Biology = Revista Brasileira de Biologia 2004; 64(2): 201-209. http://dx.doi.org/10.1590/S1519-69842004000200004. PMid:15462292.

Brazil Flora Group – BFG. Brazilian Flora 2020: Innovation and collaboration to meet Target 1 of the Global Strategy for Plant Conservation (GSPC). Rodriguésia 2018; 69(4): 1513-1527. http://dx.doi.org/10.1590/2175-7860201869402.

Carmo FF, Jacobi CM. Diversity and plant trait-soil relationships among rock outcrops in the Brazilian Atlantic rainforest. Plant and Soil 2016; 403(1-2): 7-20. http://dx.doi.org/10.1007/s11104-015-2735-7.

Colmer TD, Voesenek LACJ. Flooding tolerance: suites of plant traits in variable environments. Functional Plant Biology 2009; 36(8): 665-681. http://dx.doi.org/10.1071/FP09144.

Costa ACM, Moro MF, Martins FR. Raunkiaerian life-forms in the Atlantic forest and comparisons of life-form spectra among Brazilian main biomes. Brazilian Journal of Botany 2016; 39(3): 833-844. http://dx.doi.org/10.1007/s40415-016-0281-z.

Costa NO, Cielo-Filho R. Espectros biológicos florísticos de campos rupestres de afloramento e campos úmidos diferem entre si e em relação ao espectro biológico normal de Raunkiaer. Revista do Instituto Florestal 2012; 24(2): 159-171.

Ferreira VBR, Nascimento MT, Menezes LFT. Floristic and phytogeographic pattern of native field in southeastern Brazil. Acta Botanica Brasílica 2014; 28(3): 465-475. http://dx.doi.org/10.1590/0102-33062014abb3556.

Gaff DF, Oliver M. The evolution of desiccation tolerance in angiosperm plants: a rare yet common phenomenon. Functional Plant Biology 2013; 40(4): 315-328. http://dx.doi.org/10.1071/FP12321.

Gastauer M, Saporetti-Junior AW, Valladares F, Meira-Neto JAA. Phylogenetic community structure reveals differences in plant community assembly of an oligotrophic white-sand ecosystem from the Brazilian Atlantic Forest. Acta Botanica Brasílica 2017; 31(4): 531-538. http://dx.doi.org/10.1590/0102-33062016abb0442.

Heringer G, Thiele J, Meira-Neto JAA, Neri AV. Biological invasion threatens the sandy-savanna Mussununga ecosystem in the Brazilian Atlantic Forest. Biological Invasions 2019; 21(6): 2045-2057. http://dx.doi.org/10.1007/s10530-019-01955-5.

Hodge A, Berta G, Doussan C, Merchan F, Crespi M. Plant root growth, architecture and function. Plant and Soil 2009; 321(1-2): 153-187. http://dx.doi.org/10.1007/s11104-009-9929-9.

Kierulff M, Avelar LHS, Ferreira MES, Povoa KF, Bérnil R. Reserva Natural Vale: história e aspectos físicos. Ciência & Ambiente 2015; 49: 7-40.

König C, Weigelt P, Schrader J, Taylor A, Kattge J, Kreft H. Biodiversity data integration: the significance of data resolution and domain. PLoS Biology 2019; 17(3): e3000183. http://dx.doi.org/10.1371/journal.pbio.3000183. PMid:30883539.

Le Stradic S, Buisson E, Fernandes GW. Vegetation composition and structure of some Neotropical mountain grasslands in Brazil. Journal of Mountain Science 2015; 12(4): 864-877. http://dx.doi.org/10.1007/s11629-013-2866-3.

Magnago LFS, Martins SV, Schaefer CEGR, Neri AV. Restinga forests of the Brazilian coast: richness and abundance of tree species on different soils. Anais da Academia Brasileira de Ciências 2012; 84(3): 807-822. http://dx.doi.org/10.1590/S0001-37652012000300023. PMid:22886165.

Martins FR, Batalha MA. Formas de vida, espectro biológico de Raunkiaer e fisionomia da vegetação. In: Felfili JM, Eisenlohr PV, Melo MMRF, Andrade LA, Meira-Neto JAA, editors. Fitossociologia no Brasil: métodos e estudos de casos. Viçosa: Universidade Federal de Viçosa; 2011. p. 44-85.

Meira-Neto JA, Souza AL, Lana JM, Valente GE. Composição florística espectro biológico e fitofisionomia da vegetação de muçununga nos municípios de Caravelas e Mucurí, Bahia. Revista Árvore 2005; 29(1): 139-150. http://dx.doi.org/10.1590/S0100-67622005000100015.

Messias MCTB, Leite MGP, Meira-Neto JAA, Kozovits AR, Tavares R. Soil-vegetation relationship in quartzitic and ferruginous Brazilian rocky outcrops. Folia Geobotanica 2013; 48(4): 509-521. http://dx.doi.org/10.1007/s12224-013-9154-4.

Messias MCTB, Leite MGP, Meira-Neto JAA, Kozovits AR. Life-form spectra of quartzite and itabirite rocky outcrop sites, Minas Gerais, Brazil. Biota Neotropica 2011; 11(2): 1-14. http://dx.doi.org/10.1590/S1676-06032011000200026.

Mioduski J, Moro RS. Grupos funcionais da vegetação campestre de Alagados, Ponta Grossa, Paraná. Iheringia. Série Botânica 2011; 66(2): 241-256.

Mollard FPO, Striker GG, Ploschuk EL, Vega AS, Insausti P. Flooding tolerance of Paspalum dilatatum (Poaceae: Paniceae) from upland and lowland positions in a natural grassland. Flora 2008; 203(7): 548-556. http://dx.doi.org/10.1016/j.flora.2007.10.003.

Moro MF, Lughadha EMN, Araújo FS, Martins FR. A phytogeographical metaanalysis of the semiarid Caatinga domain in Brazil. Botanical Review 2016; 82(2): 91-148. http://dx.doi.org/10.1007/s12229-016-9164-z.

Moro MF, Sousa DJL, Matias LQ. Rarefaction, richness estimation and extrapolation methods in the evaluation of unseen plant diversity in aquatic ecosystems. Aquatic Botany 2014; 117: 48-55. http://dx.doi.org/10.1016/j.aquabot.2014.04.006.

Nascimento PC, Lani JL, Zoffoli HJO. Caracterização, classificação e gênese de solos hidromórficos em regiões litorâneas no Estado do Espírito Santo. Científica 2013; 41(1): 82-93.

Oliveira AP, Ker JC, Silva IR, Fontes MPF, Oliveira AP, Neves ATG. Spodosols pedogenesis under Barreiras Formation and sandbank environments in the South of Bahia. Revista Brasileira de Ciência do Solo 2010; 34(3): 847-860. http://dx.doi.org/10.1590/S0100-06832010000300026.

Paula LFA, Negreiros D, Azevedo LO, Fernandes RL, Stehmann JR, Silveira FAO. Functional ecology as a missing link for conservation of a resource-limited flora in the Atlantic forest. Biodiversity and Conservation 2015; 24(9): 2239-2353. http://dx.doi.org/10.1007/s10531-015-0904-x.

Peixoto AL, Silva IM, Pereira OJ, Simonelli M, Jesus RM, Rolim SG. Tabuleiro Forests North of Rio Doce: their representation in the Vale do Rio Doce Natural Reserve, Espírito Santo, Brazil. In: Thomas WW, editor. The Atlantic Coastal Forest of Northeastern Brazil. New York: The New York Botanical Garden; 2008. p. 319-350.

Ribeiro MC, Metzger JP, Martensen AC, Ponzoni FJ, Hirota MM. The Brazilian Atlantic Forest: how much is left, and how is the remaining forest distributed? Implications for conservation. Biological Conservation 2009; 142(6): 1141-1153. http://dx.doi.org/10.1016/j.biocon.2009.02.021.

Rich SM, Watt M. Soil conditions and cereal root system architecture: review and considerations for linking Darwin and Weaver. Journal of Experimental Botany 2013; 64(5): 1193-1208. http://dx.doi.org/10.1093/jxb/ert043. PMid:23505309.

Saporetti-Júnior AW, Schaefer CEGR, Souza AL, Soares MP, Araújo DSD, Meira-Neto JAA. Influence of soil physical properties on plants of the mussununga Ecosystem, Brazil. Folia Geobotanica 2012; 47(1): 29-39. http://dx.doi.org/10.1007/s12224-011-9106-9.

Schmidt W. How natural are strict forest reserves? Neophytes and therophytes as geobotanical indicators. Forstarchiv 2012; 83(2): 93-108.

Secretti ML. Caracterização e classificação de solos de campos nativos no nordeste do Espírito Santo [dissertação]. Aquidauana: Universidade Estadual de Mato Grosso do Sul; 2013.

Silva IA, Batalha MA. Species convergence into life-forms in a hyperseasonal cerrado in central Brazil. Brazilian Journal of Biology = Revista Brasileira de Biologia 2008; 68(2): 329-339. http://dx.doi.org/10.1590/S1519-69842008000200014. PMid:18660961.

Silveira FAO, Negreiros D, Barbosa NPU, Buisson E, Carmo FF, Carstensen DW et al. Ecology and evolution of plant diversity in the endangered campo rupestre: a neglected conservation priority. Plant and Soil 2016; 403(1-2): 129-152. http://dx.doi.org/10.1007/s11104-015-2637-8.

Visser EJW, Colmer TD, Blom CWPM, Voesenek CJ. Changes in growth, porosity and radical oxygen loss from adventitious roots of selected mono- and dicotyledonous wetland species with contrasting types of aerenchyma. Plant, Cell & Environment 2000; 23(11): 1237-1245. http://dx.doi.org/10.1046/j.1365-3040.2000.00628.x.

Waring EF, Maricle BR. Photosynthetic variation and carbon isotope discrimination in invasive wetland grasses in response to flooding. Environmental and Experimental Botany 2012; 77: 77-86. http://dx.doi.org/10.1016/j.envexpbot.2011.10.013.

Yamauchi T, Colmer TD, Pedersen O, Nakazono M. Regulation of root traits for internal aeration and tolerance to soil waterlogging-flooding stress. Plant Physiology 2018; 176(2): 1118-1130. http://dx.doi.org/10.1104/pp.17.01157. PMid:29118247.

Yobi A, Schlauch KA, Tillett RL, Yim WC, Espinoza C, Wone BWM et al. Sporobolus stapfianus: insights into desiccation tolerance in the resurrection grasses from linking transcriptomics to metabolomics. BMC Plant Biology 2017; 17(67): 1-30. http://dx.doi.org/10.1186/s12870-017-1013-7. PMid:28351347.
 


Submitted date:
08/15/2018

Accepted date:
05/22/2019

5d78f0860e8825593fb1fa01 floram Articles
Links & Downloads

FLORAM

Share this page
Page Sections