Floresta e Ambiente
Floresta e Ambiente
Original Article Silviculture

Formation of Macroaggregates and Organic Carbon in Cocoa Agroforestry Systems

Leonardo Rodríguez Suárez; Leidy Carolina Ule Audor; Juan Carlos Suárez Salazar

Downloads: 1
Views: 16


ABSTRACT: The objective of this study was to analyze the biological contribution to macroaggregate formation under cocoa agroforestry systems, as well as to evaluate the potential of macroaggregates to store carbon. The variation of the populations of macrofauna and the relationship with the morphology of aggregates was monitored in five agroforestry systems associated with cocoa established from different land uses, taking as reference the forest and pasture. Some cacao agroforestry systems favored the presence of macrofauna functional groups similar to the forest (p < 0.05). According to the principal component analysis, the effect of land use on macroaggregate formation is highly significant (p < 0.001) and explained 55% of the total variance. The macrofauna and macroaggregates showed significant covariation (RV = 0.22, p-value = 0.001). Biogenic macroaggregates contained more carbon when they came from agroforestry systems.


soil macrofauna, functional groups, co-inertia analysis


Acar M, Celik I, Günal H. Effects of long-term tillage systems on aggregate-associated organic carbon in the eastern Mediterranean region of Turkey. Eurasian Journal of Soil Science 2018; 7(1): 51-58. http://dx.doi.org/10.18393/ejss.335329.

Batista I, Correia MEF, Pereira MG, Bieluczyk W, Schiavo JA, Mello NA. Caracterização dos agregados em solos sob cultivo no Cerrado, MS. Semina: Ciências Agrárias 2013; 34(4). http://dx.doi.org/10.5433/1679-0359.2013v34n4p1535.

Blouin M, Hodson ME, Delgado EA, Baker G, Brussaard L, Butt KR et al. A review of earthworm impact on soil function and ecosystem services. European Journal of Soil Science 2013; 64(2): 161-182. http://dx.doi.org/10.1111/ejss.12025.

Brown GG, Niva CC, Zagatto MRG, Ferreira S A, Nadolny HS, Cardoso GBX et al. Biodiversidade da fauna do solo e sua contribuição para os serviços ambientais. In: Parron LM, Garcia JR, Oliveira ED, Brown GG, Prado RB, editors. Serviços ambientais em sistemas agrícolas e florestais do Bioma Mata Atlântica. Brasília: Embrapa; 2015.

Brussaard L, Pulleman MM, Ouédraogo É, Mando A, Six J. Soil fauna and soil function in the fabric of the food web. Pedobiologia 2007; 50(6): 447-462. http://dx.doi.org/10.1016/j.pedobi.2006.10.007.

Chen C, Liu W, Jiang X, Wu J. Effects of rubber-based agroforestry systems on soil aggregation and associated soil organic carbon: implications for land use. Geoderma 2017; 299(1): 13-24. http://dx.doi.org/10.1016/j.geoderma.2017.03.021.

Dray S, Chessel D, Thioulouse J. Co‐inertia analysis and the linking of ecological data tables. Ecology 2003; 84(11): 3078-3089. http://dx.doi.org/10.1890/03-0178.

Erktan A, Cécillon L, Graf F, Roumet C, Legout C, Rey F. Increase in soil aggregate stability along a Mediterranean successional gradient in severely eroded gully bed ecosystems: combined effects of soil, root traits and plant community characteristics. Plant and Soil 2016; 398(1-2): 121-137. http://dx.doi.org/10.1007/s11104-015-2647-6.

Instituto Geográfico Agustín Codazzi – IGAC. Estudio general de suelos y zonificación de tierras departamento de Caquetá, escala 1.100.000. Bogotá: Instituto Geográfico Agustín Codazzi; 2014. 410 p.

Jongmans AG, Pulleman MM, Balabane M, Van Oort F, Marinissen JC. Soil structure and characteristics of organic matter in two orchards differing in earthworm activity. Applied Soil Ecology 2003; 24(3): 219-232. http://dx.doi.org/10.1016/S0929-1393(03)00072-6.

Jouquet P, Bottinelli N, Shanbhag RR, Bourguignon T, Traoré S, Abbasi SA. Termites: the neglected soil engineers of tropical soils. Soil Science 2016; 181(3-4): 157-165. http://dx.doi.org/10.1097/SS.0000000000000119.

Lavelle P, Rodríguez N, Arguello O, Bernal J, Botero C, Chaparro P et al. Soil ecosystem services and land use in the rapidly changing Orinoco River Basin of Colombia. Agriculture, Ecosystems & Environment 2014; 185: 106-117. http://dx.doi.org/10.1016/j.agee.2013.12.020.

Lavelle P, Spain A, Blouin M, Brown G, Decaëns T, Grimaldi M et al. Ecosystem engineers in a self-organized soil: a review of concepts and future research questions. Soil Science 2016; 181(3/4): 91-109. http://dx.doi.org/10.1097/SS.0000000000000155.

Loss A, Pereira MG, Costa EM, Beutler SJ. Soil fertility, physical and chemical organic matter fractions, natural 13C and 15N abundance in biogenic and physicogenic aggregates in areas under different land use systems. Soil Research 2014; 52(7): 685-697. http://dx.doi.org/10.1071/SR14045.

Lubbers IM, Pulleman MM, Van Groenigen JW. Can earthworms simultaneously enhance decomposition and stabilization of plant residue carbon? Soil Biology & Biochemistry 2017; 105: 12-24. http://dx.doi.org/10.1016/j.soilbio.2016.11.008.

Moço MKS, Gama-Rodrigues EF, Gama-Rodrigues AC, Machado RC, Baligar VC. Relationships between invertebrate communities, litter quality and soil attributes under different cacao agroforestry systems in the south of Bahia, Brazil. Applied Soil Ecology 2010; 46(3): 347-354. http://dx.doi.org/10.1016/j.apsoil.2010.10.006.

Moço MKS, Gama-Rodrigues EF, Gama-Rodrigues AC, Machado RCR, Baligar VC. Soil and litter fauna of cacao agroforestry systems in Bahia, Brazil. Agroforestry Systems 2009; 76(1): 127-138. http://dx.doi.org/10.1007/s10457-008-9178-6.

Monroe PHM, Gama-Rodrigues EF, Gama-Rodrigues AC, Marques JRB. Soil carbon stocks and origin under different cacao agroforestry systems in Southern Bahia, Brazil. Agriculture, Ecosystems & Environment 2016; 221(1): 99-108. http://dx.doi.org/10.1016/j.agee.2016.01.022.

Moura EG, Aguiar ACF, Piedade AR, Rousseau GX. Contribution of legume tree residues and macrofauna to the improvement of abiotic soil properties in the eastern Amazon. Applied Soil Ecology 2015; 86: 91-99. http://dx.doi.org/10.1016/j.apsoil.2014.10.008.

Nair PR, Nair VD, Kumar BM, Haile SG. Soil carbon sequestration in tropical agroforestry systems: a feasibility appraisal. Environmental Science & Policy 2009; 12(8): 1099-1111. http://dx.doi.org/10.1016/j.envsci.2009.01.010.

Oades JM. Soil organic matter and structural stability: mechanisms and implications for management. Plant and Soil 1984; 76(1-3): 319-337. http://dx.doi.org/10.1007/BF02205590.

Pulleman MM, Six J, Van Breemen N, Jongmans AG. Soil organic matter distribution and microaggregate characteristics as affected by agricultural management and earthworm activity. European Journal of Soil Science 2005; 56(4): 453-467. http://dx.doi.org/10.1111/j.1365-2389.2004.00696.x.

R Core Team. R: a language and environment for statistical computing [online]. Vienna: R Foundation for Statistical Computing; 2018 [cited 2017 Oct 31]. Available from: https://www.R-project.org/

Silva EC No, Gervasio M, Feitosa JC, Corrêa TA No. Aggregate formation and soil organic matter under different vegetation types in Atlantic Forest from Southeastern Brazil. Semina: Ciências Agrárias 2016; 37(6): 3927. http://dx.doi.org/10.5433/1679-0359.2016v37n6p3927.

Six J, Bossuyt H, Degryze S, Denef K. A history of research on the link between (micro) aggregates, soil biota, and soil organic matter dynamics. Soil & Tillage Research 2004; 79(1): 7-31. http://dx.doi.org/10.1016/j.still.2004.03.008.

Solly EF, Schöning I, Boch S, Kandeler E, Marhan S, Michalzik B et al. Factors controlling decomposition rates of fine root litter in temperate forests and grasslands. Plant and Soil 2014; 382(1-2): 203-218. http://dx.doi.org/10.1007/s11104-014-2151-4.

Suárez JCS, Bieng MAN, Melgarejo LM, Di Rienzo JA, Casanoves F. First typology of cacao (Theobroma cacao L.) systems in Colombian Amazonia, based on tree species richness, canopy structure and light availability. PLoS One 2018; 13(2): e0191003. http://dx.doi.org/10.1371/journal.pone.0191003. PMid:29401499.

Vanhove W, Vanhoudt N, Van Damme P. Effect of shade tree planting and soil management on rehabilitation success of a 22-year-old degraded cocoa (Theobroma cacao L.) plantation. Agriculture, Ecosystems & Environment 2016; 219(1): 14-25. http://dx.doi.org/10.1016/j.agee.2015.12.005.

Velásquez E, Fonte SJ, Barot S, Grimaldi M, Desjardins T, Lavelle P. Soil macrofauna-mediated impacts of plant species composition on soil functioning in Amazonian pastures. Applied Soil Ecology 2012; 56: 43-50. http://dx.doi.org/10.1016/j.apsoil.2012.01.008.

Velásquez E, Pelosi C, Brunet D, Grimaldi M, Martins M, Rendeiro AC et al. This ped is my ped: visual separation and near infrared spectra allow determination of the origins of soil macroaggregates. Pedobiologia 2007; 51(1): 75-87. http://dx.doi.org/10.1016/j.pedobi.2007.01.002.

Wartenberg AC, Blaser WJ, Gattinger A, Roshetko JM, Van Noordwijk M, Six J. Does shade tree diversity increase soil fertility in cocoa plantations? Agriculture, Ecosystems & Environment 2017; 248: 190-199. http://dx.doi.org/10.1016/j.agee.2017.07.033.

Zamudio AM, Carrascal ML, Pulido CE, Gallardo JF, Ávila EA, Vargas MA et al. Métodos analíticos del laboratorio de suelos. 6. ed. Bogotá: Instituto Geográfico Agustín Codazzi; 2006.

Zhang S, Li Q, Lü Y, Zhang X, Liang W. Contributions of soil biota to C sequestration varied with aggregate fractions under different tillage systems. Soil Biology & Biochemistry 2013; 62: 147-156. http://dx.doi.org/10.1016/j.soilbio.2013.03.023.

Zhong XL, Li JT, Li XJ, Ye YC, Liu SS, Hallett PD et al. Physical protection by soil aggregates stabilizes soil organic carbon under simulated N deposition in a subtropical forest of China. Geoderma 2017; 285(1): 323-332. http://dx.doi.org/10.1016/j.geoderma.2016.09.026.

Submitted date:

Accepted date:

5d6eaff30e88252f088b1e50 floram Articles
Links & Downloads


Share this page
Page Sections