Floresta e Ambiente
Floresta e Ambiente
Original Article Conservation of Nature

Spring-Summer Drought Induces Extremely Low Radial Growth Reactions in North-Tyrrhenian Pinus pinea L.

Sergio Piraino; Fidel Alejandro Roig

Downloads: 0
Views: 6


Abstract: Climate projections predict shifts in environmental conditions, with cascade effects on forest growth dynamics. As such, Pinus pinea L., an ecologically important low-elevation Mediterranean tree, can be threatened by drought events. The occurrence of negative stem growth anomalies (“negative pointer years”, or NPY) and its relation to climatic conditions were analyzed, as well as the influence of extreme dry spells upon the species growth. NPY were temporally independent among the analyzed forest stands, likely due to local factors. We observed that NPY depended on dry and hot conditions during the spring-summer period at both sites, while differences in the NPY-climate reflected the species medium term dendroclimatological signal. Extremely dry years directly reduced stem growth rates. Water stress differentially affected growth at each site, likely reflecting local adaptation to droughts. Because of the increasing drought trend expected for the Mediterranean basin, our findings must be considered regarding the conservation and management of these forests.


Mediterranean, pointer year analysis, ring width, umbrella pine, water stress


Allen CD, Breshears DD, McDowell NG. On underestimation of global vulnerability to tree mortality and forest die‐off from hotter drought in the Anthropocene. Ecosphere 2015; 6(8): 1-55. 10.1890/ES15-00203.1

Aniol RW. Tree-ring analysis using CATRAS. Dendrochronologia 1983; 1: 45-53.

Busotti F, Cenni E, Ferretti M, Cozzi A, Brogi L, Mecci A. Forest condition in Tuscany (Central Italy). Field surveys 1987-1991. Forestry 1995; 68(1): 11-24. 10.1093/forestry/68.1.11

Cambi M, Paffetti D, Vettori C, Picchio R, Venanzi R, Marchi E. Assessment of the impact of forest harvesting operations on the physical parameters and microbiological components on a Mediterranean sandy soil in an Italian stone pine stand. European journal of forest research 2017; 136(2): 205-215. 10.1007/s10342-016-1020-5

Campelo F, Nabais C, Freitas H, Gutierrez E. Climatic significance of tree-ring width and intra-annual density fluctuations in Pinus pinea from a dry Mediterranean area in Portugal. Annals of Forest Science 2006; 64(2): 229-238. 10.1051/forest:2006107

Cook ER, Krusic PJ. Program ARSTAN 40c. Palisades: Tree-ring Laboratory; 2006. 14 p.

Cropper JP. Tree-ring skeleton plotting by computer. Tree-Ring Bulletin 1979; 39: 47-60.

De Luis M, Čufar K, Di Filippo A, Novak K, Papadopoulos A, Piovesan G et al. Plasticity in dendroclimatic response across the distribution range of Aleppo pine (Pinus halepensis). PLoS One 2013; 8(12): e83550. 10.1371/journal.pone.0083550

De Luis M, Novak K, Čufar K, Raventós J. Size mediated climate-growth relationships in Pinus halepensis and Pinus pinea. Trees 2009; 23(5): 1065-1073. 10.1007/s00468-009-0349-5

De Micco V, Saurer M, Aronne G, Tognetti R, Cherubini P. Variations of wood anatomy and δ13C within-tree rings of coastal Pinus pinaster showing intra-annual density fluctuations. IAWA Journal 2007; 28(1): 61-74. 10.1163/22941932-90001619

Diffenbaugh NS, Giorgi F. Climate change hotspots in the CMIP5 global climate model ensemble. Climatic change 2012; 114(3-4): 813-822. 10.1007/s10584-012-0570-x

Drobyshev I, Gewehr S, Berninger F, Bergeron Y. Species specific growth responses of black spruce and trembling aspen may enhance resilience of boreal forest to climate change. Journal of Ecology 2013; 101(1): 231-242. 10.1111/1365-2745.12007

Fallour D, Fady B, Lefevre F. Study on isozyme variation in Pinus pinea L.: evidence for low polymorphism. Silvae Genetica 1997; 46(4): 201-206.

Gonzalez IG. Weiser: a computer program to identify event and pointer years in dendrochronological series. Dendrochronologia 2001; 19(2): 239-244.

Holmes RL, Swetnam T. Program EVENT users manual: superposed epoch analysis in fire history. Tucson: University of Arizona; 1994. 7 p.

Holmes RL. Computer-assisted quality control in tree-ring dating and measurement. Tree-Ring Bulletin 1983; 43: 69-78.

Intergovernmental Panel on Climate Change - IPCC Summary for policymakers. In: IPCC. Climate Change 2014: Synthesis report. Geneva; 2014. p. 1-35.

Jentsch A, Beierkuhnlein C. Research frontiers in climate change: effects of extreme meteorological events on ecosystems. Comptes Rendus Geoscience 2008; 340(9): 621-628. 10.1016/j.crte.2008.07.002

Liphschitz N, Lev-Yadun S, Rosen E, Waisel Y. The annual rhythm of activity of the lateral meristems (cambium and phellogen) in Pinus halepensis Mill. and Pinus pinea L. IAWA Bulletin 1984; 5: 263-274. 10.1163/22941932-90000413

Maetzke F, Travaglini D. Le pinete di pino domestico della costa toscana: ipotesi di gestione sistemica per la conservazione della biodiversità. L’Italia Forestale e Montana 2005; 60(4): 541-558.

Mazza G, Cutini A, Manetti MC. Site-specific growth responses to climate drivers of Pinus pinea L. tree rings in Italian coastal stands. Annals of Forest Science 2014; 71(8): 927-936. 10.1007/s13595-014-0391-3

Mazza G, Manetti MC. Growth rate and climate responses of Pinus pinea L. in Italian coastal stands over the last century. Climate Change 2013; 121(4): 713-725. 10.1007/s10584-013-0933-y

Mooney CZ, Duval RD. Bootstrapping: a nonparametric approach to statistical inference. Newbury Park: Sage; 1993. 80 p. 10.4135/9781412983532

Mutke S, Calama R, Gonzalez-Martines SC, Montero G, Javier-Gordo F, Bono D et al. Mediterranean stone pine: botany and horticulture. In: Janick J (ed.): Horticultural reviews. Hoboken: Wiley; 2012. p. 39153-39201. 10.1002/9781118100592.ch4

Nabais C, Campelo F, Vieira J, Cherubini P. Climatic signals of tree-ring width and intra-annual density fluctuations in Pinus pinaster and Pinus pinea along a latitudinal gradient in Portugal. Forestry 2014; 87(4): 598-605. 10.1093/forestry/cpu021

Natalini F, Correia AC, Vazquez-Pique J, Alejano R. Tree rings reflect growth adjustments and enhanced synchrony among sites in Iberian stone pine (Pinus pinea L.) under climate change. Annals of Forest Science 2015; 72(8): 1023-1033. 10.1007/s13595-015-0521-6

Novak K, De Luis M, Cufar K, Raventos J. Frequency and variability of missing tree rings along the stems of Pinus halepensis and Pinus pinea from a semiarid site in SE Spain. Journal of Arid Environments 2011; 75(5): 494-498. 10.1016/j.jaridenv.2010.12.005

Oliveras I, Martinez-Vilalta J, Jimenez-Ortiz T, Lledó MJ, Escarré A, Piñol J. Hydraulic properties of Pinus halepensis, Pinus pinea and Tetraclinis articulata in a dune ecosystem of Eastern Spain. Plant Ecology 2003; 169(1): 131. 10.1023/A:1026223516580

Ols C, Hofgaard A, Bergeron Y, Drobyshev I. Previous growing season climate controls the occurrence of black spruce growth anomalies in boreal forests of Eastern Canada. Canadian Journal of Forest Research 2016; 46(5): 696-705. 10.1139/cjfr-2015-0404

Pallardy SG. Physiology of woody plants. Burlington: Academic Press; 2010. 464 p.

Peruzzi A, Cherubini P, Gorreri L, Cavalli S. Le pinete e la produzione dei pinoli dal passato ai giorni nostri, nel territorio del Parco di Migliarino, S. Rossore, Massaciuccoli. Pisa: Ente Parco Regionale Migliarino, San Rossore, Massaciuccoli. Litografia Felici; 1998. 134 p.

Piraino S, Camiz S, Di Filippo A, Piovesan G, Spada F. A dendrochronological analysis of Pinus pinea L. on the Italian mid-Tyrrhenian coast. Geochronometria 2013; 40(1): 77-89. 10.2478/s13386-012-0019-z

Piraino S, Roig-Juñent FA. North Atlantic Oscillation influences on radial growth of Pinus pinea on the Italian mid-Tyrrhenian coast. Plant Biosystems 2014; 148(2): 279-287. 10.1080/11263504.2013.770806

Raddi S, Cherubini P, Lauteri M, Magnani F. The impact of sea erosion on coastal Pinus pinea stands: a diachronic analysis combining tree-rings and ecological markers. Forest Ecology and Management 2009; 257(3): 773-781. 10.1016/j.foreco.2008.09.025

Rapetti F. L’influenza del bosco mediterraneo sul clima I: la macchia di Migliarino (litorale pisano). Atti Societá Toscana di Scienze Naturali 1997; 104: 73-90.

Rapetti F. L’influenza del bosco mediterraneo sul clima. 2-La Pineta di Marina di Cecina (Toscana centrale). Atti-Societá Toscana di Scienze Naturali 1999; 106: 17-31.

Richardson DM. Ecology and biogeography of Pinus. Cambridge: Cambridge University Press; 1996. 527 p.

Schweingruber FH. Tree rings and environment: dendroecology. Berne: Paul Haupt AG Bern; 1996.

Schweingruber FH, Eckstein D, Serre-Bachet F, Braker OU. Identification, presentation and interpretation of event years and pointer years in dendrochronology. Dendrochronologia 1990; 8: 9-38.

Speer JH. Fundamentals of tree-ring research. Tucson: University of Arizona Press; 2010. 360 p.

Teobaldelli M, Mencuccini M, Piussi P. Water table salinity, rainfall and water use by umbrella pine trees (Pinus pinea L.). Plant Ecology 2004; 171(1-2): 23-33.

Toromani E, Pasho E, Alla AQ, Mine V, Collaku N. Radial growth responses of Pinus halepensis Mill. and Pinus pinea L. forests to climate variability in western Albania. Geochronometria 2015; 42(1): 91-99. 10.1515/geochr-2015-0012

Vagge I, Biondi E. La vegetazione delle coste sabbiose del Tirreno settentrionale italiano. Fitosociologia 1999; 36(2): 61-95.

Van der Schrier G, Briffa KR, Jones PD, Osborn TJ. Summer moisture variability across Europe. Journal of Climate 2006; 19: 2818-2834. 10.1175/JCLI3734.1

Walther GR, Post E, Convey P, Menzel A, Parmesan C, Beebee TJC et al. Ecological responses to recent climate change. Nature 2002; 416: 389-395. 10.1038/416389a

Wigley TML, Briffa KR, Jones PD. On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology. Journal of Climate and Applied Meteorology 1984; 23(2): 201-213. 10.1175/1520-0450(1984)023<0201:otavoc>2.0.co;2

5ef4dc1b0e88254950126526 floram Articles
Links & Downloads


Share this page
Page Sections