FLORAM receives Impact Factor

We are pleased to announce that FLORAM has received its first impact factor rating in the 2022 Journal Citation Reports (JCR).

Now FLORAM has the highest impact factor among Brazilian Forest Sciences journals.

Floresta e Ambiente
Floresta e Ambiente
Original Article Silviculture

Efeito da Fertilização Amoniacal na Aclimatação de Ingá Sob Alta e Moderada Irradiância

Effect of Ammonium Fertilization on Acclimation of Ingá to High and Moderate Irradiance

Santos, Ana Maria Silva dos; Ferreira, Marciel José; Gonçalves, José Francisco de Carvalho; Justino, Gilberto Costa

Downloads: 0
Views: 1059


O nitrogênio pode ser determinante para a tolerância das plantas a fatores de estresse como a alta irradiância. O objetivo deste trabalho foi investigar o efeito da fertilização amoniacal na aclimatação de plantas jovens de ingá sob dois ambientes de luz. O acúmulo e partição de matéria seca, o crescimento, a capacidade fotossintética e os teores foliares de nitrogênio (N) foram analisados em plantas submetidas a irradiância moderada = 554,4 ± 81 µmol de fótons m-2 s-1 e alta irradiância = 1941 ± 12,3 µmol de fótons m-2 s-1. Os maiores valores de matéria seca, crescimento e fotossíntese foram verificados em plantas sob moderada e alta irradiância fertilizadas com amônio. A área foliar específica foi maior nas plantas sob moderada irradiância, enquanto que os tratamentos controle e com a participação do N não diferiram entre si, independentemente do ambiente de luz. A fertilização amoniacal contribuiu para a aclimatação e promoveu o acúmulo de massa seca dos ingás sob moderada e alta irradiância, enquanto plantas crescendo sob moderada irradiância investiram em estratégias de interceptação de energia (e.g., área foliar específica).


Inga edulis, Fabaceae arbórea, nitrogênio, crescimento, luz.


Nitrogen can be decisive for the tolerance of plants to stress factors such as high irradiance. This work aimed to investigate the effect of ammonium fertilization during acclimation of young ingá plants under two light environments. Accumulation and partitioning of dry matter, growth, photosynthetic capacity and leaf nitrogen content were analyzed in ingá plants subjected to moderate and high irradiance of 554.4±81 µmol photons m-2 s-1 and 1941±12.3 µmol photons m-2 s-1, respectively. The highest values of dry matter, growth and photosynthesis were observed in plants subjected to moderate and high irradiance fertilized with ammonium. The specific leaf area was higher in plants under moderate irradiance, while the treatments control and N fertilization showed no differences, independent of light condition. The ammonium fertilization contributed to acclimation and dry matter accumulation of ingá under moderate and high irradiance, while plants subjected to moderate irradiance invested in strategies for energy interception (e.g. specific leaf area).


Inga edulis, leguminous tree species, nitrogen, growth, light.


Ariz I, Artola E, Asensio AC, Cruchaga S, Aparicio-Tejo PM, Moran JF. High irradiance increase NH4+ tolerance in Pisum sativum: higher carbon and energy availability improve ion balance but not N assimilation. Journal of Plant Physiology 2011; 168(10): 1009-1015. PMid:21371777. http://dx.doi.org/10.1016/j.jplph.2010.11.022.

Ariz I, Asensio AC, Zamarreño AM, Garcia-Mina JM, Aparicio-Tejo PM, Moran JF. Changes in the C/N balance caused by increasing external ammonium concentrations are driven by carbon and energy availabilities during ammonium nutrition in pea plants: the key roles of asparagine synthetase and anaplerotic enzymes. Physiologia Plantarum 2013; 148(4): 522-537. PMid:23061733. http://dx.doi.org/10.1111/j.1399-3054.2012.01712.x.

Ariz I, Esteban R, García-Plazaola JI, Becerril JM, Aparicio-Tejo PM, Moran JF. High irradiance induces photoprotective mechanisms and a positive effect on NH4+ stress in Pisum sativum L. Journal of Plant Physiology 2010; 167(13): 1038-1045. PMid:20434233. http://dx.doi.org/10.1016/j.jplph.2010.02.014.

Berlyn GP, Cho J. Light, moisture, and nutrient use by plants. In: Ashton MS, Montagnini F, editors. The silvicultural basis for agroforestry systems. Boca Raton: CRC Press; 2000.

Bremner JM. Methods of soil analysis. Part 3: chemical methods. Madison: Soil Science Society of America/American Society of Agronomy; 1996. Soil Science Society of America Book Series, n. 5.

Bugbee BG. Growth, analysis and yield components. In: Salisbury FB. Units, symbols, and terminology for plant physiology. Oxford: Oxford University Press; 1996.

Campoe OC, Iannelli C, Stape JL, Cook RL, Mendes JCT, Vivian R. Atlantic forest tree species responses to silvicultural practices in a degraded pasture restoration plantation: from leaf physiology to survival and initial growth. Forest Ecology and Management 2014; 313(1): 233-242. http://dx.doi.org/10.1016/j.foreco.2013.11.016.

Costa AC, Rezende-Silva SL, Megguer CA, Moura LMF, Rosa M, Silva AA. The effect of irradiance and water restriction on photosynthesis in Young jatobá-do-cerrado (Hymenaea stignocarpa) plants. Photosynthetica 2015; 53(1): 118-127. http://dx.doi.org/10.1007/s11099-015-0085-6.

Coste S, Roggy JC, Sonnier G, Dreyer E. Similar irradiance-elicited plasticity of leaf traits in saplings of 12 tropical rainforest tree species with highly different leaf mass to area ratio. Functional Plant Biology 2010; 37(4): 342-355. http://dx.doi.org/10.1071/FP09119.

Cruz C, Domínguez-Valdivia MD, Aparicio-Tejo PM, Lamsfus C, Bio AMF, Martins-Loução MA et al. Intra-specific variation in pea responses to ammonium nutrition leads to different degrees of tolerance. Environmental and Experimental Botany 2011; 70(2-3): 233-243. http://dx.doi.org/10.1016/j.envexpbot.2010.09.014.

Davanso VM, Souza LA, Medri ME, Pimenta JA, Bianchini E. Photosynthesis, growth and development of Tabebuia avellanedae Lor. Ex Griseb. (Bignoniaceae) in flooded soil. Brazilian Archives of Biology and Technology 2002; 45(3): 375-384. http://dx.doi.org/10.1590/S1516-89132002000300016.

Eichelmann H, Oja V, Rasulov B, Padu E, Bichele I, Pettai H et al. Adjustment of leaf photosynthesis to shade in a natural canopy: reallocation of nitrogen. Plant, Cell & Environment 2005; 28(3): 389-401. http://dx.doi.org/10.1111/j.1365-3040.2004.01275.x.

Evans JR, Poorter H. Photosynthetic acclimation of plants to growth irradiance: the relative importance of specific leaf area and nitrogen patitioning in maximizing carbon gain. Plant, Cell & Environment 2001; 24(8): 755-767. http://dx.doi.org/10.1046/j.1365-3040.2001.00724.x.

Ferreira GA, Prado JAP Jr, Schiavini I, Melo I. Plastic responses in tree architecture and specific leaf area of Xylopia aromatica (Annonaceae): adaptations to environments with different light intensities. Brazilian Journal of Botany 2013; 36(4): 279-283. http://dx.doi.org/10.1007/s40415-013-0035-0.

Gonçalves JFC, Santos UM Jr, Nina AR Jr, Chevreuil LR. Energetic flux and performace index in copaiba (Copaifera multijuga Hayne) and mahogany (Swietenia macrophylla King) seedlings grow under two irradiance environments. Brazilian Journal of Plant Physiology 2007; 19(3): 171-184. http://dx.doi.org/10.1590/S1677-04202007000300001.

Gonçalves JFC, Silva CEM, Justino GC, Nina Júnior AR. Efeito do ambiente de luz no crescimento de plantas jovens de mogno (Swietenia macrophylla King). Scientia Florestalis 2012; 40(95): 337-344.

Hoagland DR, Arnon DI. The water culture method for growing plants without soil. Berkeley: University of California, Agricultural Experimental Station; 1950. Circular n. 347.

Hoch L, Pokorny B, De Jong W. How successful is tree growing for smallholders in the Amazon? International Forestry Review 2009; 11(3): 299-310. http://dx.doi.org/10.1505/ifor.11.3.299.

Jaquetti RK, Gonçalves JFC, Ferraz JBS, Ferreira MJ, Santos UM Jr, Lacerda CF. Green fertilization enhances the photosynthetic performance and the growth of leguminous trees for restoration plantation in Central Amazon. American Journal of Plant Sciences 2014; 5(16): 2497-2508. http://dx.doi.org/10.4236/ajps.2014.516264.

Lambers H, Poorter H. Inherent variation in growth rate between higher plants: a search for physiological causes and ecological consequences. Advances in Ecological Research 1992; 23: 187-261. http://dx.doi.org/10.1016/S0065-2504(08)60148-8.

Larbi A, Vázquez S, El-Jendoubi H, Msallem M, Abadía J, Abadía A et al. Canopy light heterogeneity drives leaf anatomical, eco-physiological, and photosynthetic changes in olive trees grown in a high-density plantation. Photosynthesis Research 2015; 123(2): 141-155. PMid:25344757. http://dx.doi.org/10.1007/s11120-014-0052-2.

Leblanc HA, Mcgraw RL, Nygren P, Le Roux C. Neotropical legume tree Inga edulis forms N2-fixing symbiosis with fast-growing Bradyrhizobium strains. Plant and Soil 2005; 275(1-2): 123-133. http://dx.doi.org/10.1007/s11104-005-0808-8.

Li D, Tian M, Cai J, Jiang D, Cao W, Dai T. Effects of low nitrogen supply on relationships between photosynthesis and nitrogen status at different leaf position in wheat seedlings. Plant Growth Regulation 2013; 70(3): 257-263. http://dx.doi.org/10.1007/s10725-013-9797-4.

Lojka B, Preininger D, Van Damme P, Rollo A, Banout J. Use of the Amazonian tree species Inga edulis for soil regeneration and weed control. Journal of Tropical Forest Science 2012; 24(1): 89-101.

Miyazawa M, Pavan MA, Muraoka T, Carmo CAFS, Mello WJ. Análise química de tecidos vegetais. In: Silva FC, editor. Manual de análise química de solos, plantas e fertilizantes. Brasília: EMBRAPA; 1999.

Nichols JD, Carpenter FL. Interplanting Inga edulis yields nitrogen benefits to Terminalia Amazonia. Forest Ecology and Management 2006; 233(2-3): 344-351. http://dx.doi.org/10.1016/j.foreco.2006.05.031.

Nikiforou C, Manetas Y. Inherent nitrogen deficiency in Pistacia lentiscus preferentially affects photosystem I: a seasonal field study. Functional Plant Biology 2011; 38(11): 848-855. http://dx.doi.org/10.1071/FP11040.

Omena-Garcia RP, Justino GC, Araújo VBF, Souza LAG, Camargos LS, Gonçalves JFC. Mineral of nitrogen associated changes in growth and xylem-N compounds in Amazonia legume tree. Journal of Plant Nutrition 2015; 38(4): 584-595. http://dx.doi.org/10.1080/01904167.2014.957389.

Omena-Garcia RP, Justino GC, Soodek L, Gonçalves JFC. Mineral nitrogen affects nodulation and amino acid xylem transport in the Amazonian legume Inga edulis Mart. International Journal of Plant Physiology and Biochemistry 2011; 3(12): 3-6.

Onoda Y, Hikosaka K, Hirose T. Allocation of nitrogen to cell walls decreases photosynthetic nitrogen-use efficiency. Functional Ecology 2004; 18(3): 419-425. http://dx.doi.org/10.1111/j.0269-8463.2004.00847.x.

Perez-Harguindeguy N, Diaz S, Garnier E, Lavorel S, Poorter H, Jaureguiberry P et al. New handbook for standardised measurement of plant functional traits worldwide. Australian Journal of Botany 2013; 61(3): 167-234. http://dx.doi.org/10.1071/BT12225.

Ramalho JC, Pons TL, Groeneveld HW, Azinheira HG, Nunes MA. Photosynthetic acclimation to high light conditions in mature leaves of Coffea arabica L.: role of xanthophylls, quenching mechanisms and nitrogen nutrition. Australian Journal of Plant Physiology 2000; 27(1): 43-51.

Rooijen RV, Aarts MG, Harbiso J. Natural genetic variation for acclimation of photosynthetic light use efficiency to growth irradiance in Arabidopsis. Plant Physiology 2015; 167(4): 1412-1429. PMid:25670817. http://dx.doi.org/10.1104/pp.114.252239.

Roosta HR, Schjoerring K. Root carbon enrichment alleviates ammonium toxicity in cucumber plants. Journal of Plant Nutrition 2008; 31(5): 941-958. http://dx.doi.org/10.1080/01904160802043270.

Salomon E, Bar-Eyal L, Sharon S, Keren N. Balancing photosynthetic electron flow is critical for cyanobacterial acclimation to nitrogen limitation. Biochimica et Biophysica Acta 2013; 1827(3): 340-347. PMid:23201479. http://dx.doi.org/10.1016/j.bbabio.2012.11.010.

Santiago WR, Vasconcelos SS, Kato OR, Bispo CJC, Rangel-Vasconcelos GT, Castellani DC. Nitrogênio mineral e microbiano do solo em sistemas agroflorestais com palma de óleo na Amazônia oriental. Acta Amazonica 2013; 43(4): 395-406. http://dx.doi.org/10.1590/S0044-59672013000400001.

Sarijeva G, Knapp M, Lichtenthaler HK. Differences in photosynthetic activity, chlorophyll and carotenoid levels, and in chlorophyll fluorescence parameters in green sun and shade leaves of Gingko and Fagus. Journal of Plant Physiology 2007; 164(1): 950-955. PMid:17074414. http://dx.doi.org/10.1016/j.jplph.2006.09.002.

Scoffoni C, Kunkle J, Pasquet-Kok J, Vuong C, Patel AJ, Montgomery RA et al. Ligh-induced plasticity in leaf hydraulics, venation, anatomy, and gas exchange in ecologically diverse Hawaiian lobeliads. The New Phytologist 2015; 207(1): 43-58. PMid:25858142. http://dx.doi.org/10.1111/nph.13346.

Setién I, Fuertes-Mendizabal T, González A, Aparicio-Tejo PM, González-Murua C, González-Moro MB et al. High irradiance improves ammonium tolerance in wheat plants by increasing N assimilation. Journal of Plant Physiology 2013; 170(8): 758-771. PMid:23485260. http://dx.doi.org/10.1016/j.jplph.2012.12.015.

Strasser RJ, Tsimilli-Michael M, Qiang S, Goltsev V. Simultaneous in vivo recording of prompt and delayed fluorescence and 820-nmreflection changes during drying and after rehydration of the resurrection plant Haberlea rhodopensis. Biochimica et Biophysica Acta 2010; 197(6-7): 1313-1326. PMid:20226756. http://dx.doi.org/10.1016/j.bbabio.2010.03.008.

Tripathi SN, Raghubanshi AS. Seedling growth of five tropical dry forest tree species in relation to light and nitrogen gradients. Journal of Plant Ecology 2014; 7(3): 250-263. http://dx.doi.org/10.1093/jpe/rtt026.

Vincent JM. A manual for the pratical study of root-nodule bacteria. Oxford: Blackwell Scientific; 1970.

Zhu Z, Gerendás J, Bendixen R, Schinner K, Tabrizi H, Sattelmacher B et al. Different tolerance to light stress in NO3- and NH4+ grown Phaseolus vulgaris L. Plant Biology 2000; 5(2): 558-570. http://dx.doi.org/10.1055/s-2000-7498.

5a705df60e88258e1df8b080 floram Articles
Links & Downloads


Share this page
Page Sections