Floresta e Ambiente
https://floram.org/article/doi/10.1590/2179-8087.019115
Floresta e Ambiente
Original Article Wood Science and Technology

Nanostructured Films Produced from the Bleached Pinus sp. Kraft Pulp

Filmes Nanoestruturados Produzidos a partir de Polpa Kraft Branqueada de Pinus sp.

Lívia Cássia Viana; Graciela Ines Bolzon de Muñiz; Washington Luiz Esteves Magalhães; Alan Sulato de Andrade; Silvana Nisgoski; Daniele Cristina Potulski

Downloads: 0
Views: 41

Abstract

ABSTRACT: This study investigates the physical and mechanical properties of nanostructured films produced from Pinus sp. kraft pulp. To obtain the nanocellulose, the bleached kraft pulp was submitted to six different grinding regimes: two, five, ten, 20, 30, and 40 passes through the grinder. The influence of the number of passes was evaluated through the films’ physical and mechanical properties. The results show that the nanofibers reduced the thickness and considerably increased the density values of the fabricated films. The tensile strength increased more than 300% and the burst index was ten times higher in relation to normal papers. The more compact structure and lower porosity caused by the larger contact surface between nanofibers in the nanostructured films resulted in higher values of density, tensile strength, and burst resistance.

Keywords

nanocellulose, grinder, mechanical properties, density, crystallinity index

Resumo

RESUMO: Este trabalho investiga as propriedades físicas e mecânicas de filmes nanoestruturados produzidos a partir da polpa kraft branqueada de Pinus sp. Para obter a nanocelulose, a polpa kraft branqueada foi submetida a seis diferentes intensidades de desfibrilação pelo moinho: dois, cinco, dez, 20, 30 e 40 passes. A influência do número de passes foi avaliada por meio das propriedades físicas e mecânicas dos filmes. Os resultados indicam que a presença de nanofibrilas reduziu a espessura e aumentou consideravelmente os valores de densidade dos filmes fabricados. Observou-se aumento da resistência à tração de 300% e o índice de ruptura foi dez vezes maior em relação aos papéis normais. A estrutura mais compacta e a menor porosidade causada pela maior superfície de contato entre as nanofibrilas nos filmes resultaram em maiores valores de densidade, resistência à tração e resistência à ruptura.
 

Palavras-chave

nanocelulose, moinho, propriedades mecânicas, densidade, índice de cristalinidade

References

Abe K, Iwamoto S, Yano H. Obtaining cellulose nanofibers with a uniform width of 15 nm from wood. Biomacromolecules 2007; 8(10): 3276-3278. 10.1021/bm700624p

Abe K, Nakatsubo F, Yan H. High-strength nanocomposite based on fibrillated chemi-thermomechanical pulp. Composites Science and Technology 2009; 69(14): 2434-2437. 10.1016/j.compscitech.2009.06.015

Abe K, Yano H. Comparison of the characteristics of cellulose microfibril aggregates isolated from fiber and parenchyma cells of Moso bamboo (Phyllostachys pubescens). Cellulose 2010 17(2): 271-277. 10.1007/s10570-009-9382-1

Aulin C, Ström G. Multilayered alkyd resin/nanocellulose coatings for use in renewable packaging solutions with a high level of moisture resistance. Industrial & Engineering Chemistry Research 2013; 52(7): 2582-2589. 10.1021/ie301785a

Balea A, Blanco A, Monte MC, Merayo N, Negro C. Effect of bleached eucalyptus and pine cellulose nanofibers on the physico-mechanical properties of cartonboard. BioResources 2016; 11(4): 8123-8138. 10.15376/biores.11.4.8123-8138

Balea A, Merayo N, Fuente N, Negro C, Delgado-Aguilar M, Mutje P et al. Cellulose nanofibers from residues to improve linting and mechanical properties of recycled paper. Cellulose 2018; 25(2): 1339-1351. 10.1007/s10570-017-1618-x

Berglund LA, Burgert I. Bioinspired wood nanotechnology for functional materials. Advanced Material 2018; 30(19): e1704285. 10.1002/adma.201704285

Besbes I, Vilar MR, Boufi S. Nanofibrillated cellulose from alfa, eucalyptus and pine fibres: preparation, characteristics and reinforcing potential. Carbohydrate Polymers 2011; 86(3): 1198-1206. 10.1016/j.carbpol.2011.06.015

Bharimalla AK, Deshmukh SP, Patil PG, Vigneshwaran N. Energy efficient manufacturing of nanocellulose by chemo- and bio-mechanical processes: a review. World Journal of Nano Science and Engineering, 2015; 5(4): 204-212. 10.4236/wjnse.2015.54021

Brodin FW, Gregersen ØW, Syverud K. Cellulose nanofibrils: challenges and possibilities as a paper additive or coating material: a review. Nordic Pulp & Paper Research Journal 2014; 29(1): 156-166. 10.3183/npprj-2014-29-01-p156-166

Campano C, Merayo N, Balea A, Tarrés Q, Delgado-Aguilar M, Mutjé P et al. Mechanical and chemical dispersion of nanocellulose to improve their reinforcing effect on recycled paper. Cellulose 2018; 25(1): 269-280. 10.1007/s10570-017-1552-y

Carrasco F, Mutjé P, Pèlach MA. Refining of bleached cellulosic pulps: characterization by application of the colloidal titration technique. Wood Science and Technology 1996; 30(4): 227-236. 10.1007/BF00229345

Chinga-Carrasco G. Cellulose fibres, nanofibrils and microfibrils: the morphological sequence of MFC components from a plant physiology and fibre technology point of view. Nanoscale Research Letter 2011; 6: 417. 10.1186/1556-276X-6-417

Dufresne A. Nanocellulose: from nature to high performance tailored materials. Berlin: De Gruyter; 2012.

Fall AB, Burman A, Wågberg L Cellulosic nanofibrils from eucalyptus, acacia and pine fibers. Nordic Pulp & Paper Research Journal 2014; 29(1): 176-184. 10.3183/npprj-2014-29-01-p176-184

Fengel D, Wegener G. Wood chemistry, ultrastructure, reactions. New York: De Gruyter; 1984.

Gomide JL, Colodette JL, Oliveira RC, Silva CM. Technological characterization of the new generation of Eucalyptus clones in Brazil for kraft pulp production. Revista Árvore 2005; 29(1): 129-137. 10.1590/S0100-67622005000100014

González I, Alcalà M, Chinga-Carrasco GC, Vilaseca F, Boufi S, Mutjé P. From paper to nanopaper: evolution of mechanical and physical properties. Cellulose 2014; 21(4): 2599-2609. 10.1007/s10570-014-0341-0

González I, Boufi S, Pèlach MA, Alcalà M, Vilaseca F, Mutjé P. Nanofibrillated cellulose as paper additive in Eucalyptus pulps. BioResources 2012; 7(4): 5167-5180.

He M, Cho BU, Won JM. Effect of precipitated calcium carbonate: cellulose nanofibrils composite filler on paper properties. Carbohydrate Polymers 2016; 136: 820-825. 10.1016/j.carbpol.2015.09.069

Henriksson M, Berglund LA, Isaksson P, Lindström T, Nishino T. Cellulose nanopaper structures of high toughness. Biomacromolecules 2008; 9(6): 1579-1585. 10.1021/bm800038n

Herrera MA, Sirviö JA, Mathew AP, Oksman K. Environmental friendly and sustainable gas barrier on porous materials: nanocellulose coatings prepared using spin- and dip-coating. Materials & Design 2016; 93: 19-25. 10.1016/j.matdes.2015.12.127

Ifuku S, Nogi M, Yoshioka M, Morimoto M, Yano H, Saimoto H. Fibrillation of dried chitin into 10-20 nm nanofibers by a simple grinding method under acidic condition. Carbohydrate Polymers 2010; 81(1): 134-139. 10.1016/j.carbpol.2010.02.006

International Organization for Standardization - ISO. ISO 5269-2: pulps: preparation of laboratory sheets for physical testing - part 2: Rapid-Köethen method. Geneva; 1980.

Ioelovich M, Larina E. Parameters of crystalline structure and their influence on the reactivity of C1. Cellulose Chemistry and Technology 1999; 33: 3-12.

Iwamoto S, Abe K, Yano H. The effect of hemicelluloses on wood pulp nanofibrillation and nanofiber network characteristics. Biomacromolecules 2008; 9(3): 1022-1026. 10.1021/bm701157n

Jonoobi M, Mathew AP, Oksman K. Producing low-cost cellulose nanofiber from sludge as new source of raw materials. Industrial Crops and Products 2012; 40(1): 232-238. 10.1016/j.indcrop.2012.03.018

Josset S, Orsolini P, Siqueira G, Tejado A, Tingaut P, Zimmermann T. Energy consumption of the nanofibrillation of bleached pulp, wheat straw and recycled newspaper through a grinding process. Nordic Pulp & Paper Research Journal 2014; 29(1): 167-175. 10.3183/npprj-2014-29-01-p167-175

Julkapli NM, Bagheri S. Nanocellulose as a green and sustainable emerging material in energy applications: a review. Polymers for Advanced Technologies 2017; 28(12): 1583-1594. 10.1002/pat.4074

Kalia S, Boufi S, Celli A, Kango S. Nanofibrillated cellulose: surface modification and potential applications. Colloid and Polymer Science 2014; 292(1): 5-31. 10.1007/s00396-013-3112-9

Kargarzadeh H, Mariano M, Huang J, Lin N, Ahmad I, Dufresne A et al. Recent developments on nanocellulose reinforced polymer nanocomposites: a review. Polymer 2017; 132: 368-393. 10.1016/j.polymer.2017.09.043

Panthapulakkal S, Sain M. Preparation and characterization of cellulose nanofibril films from wood fibre and their thermoplastic polycarbonate composites. International Journal of Polymer Science 2012; 2012: 381342. 10.1155/2012/381342

Segal L, Creely JJ, Martin AE Jr, Conrad CM. An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Textile Research Journal 1959; 29(10): 786-794. 10.1177/004051755902901003

Shimizu M, Saito T, Isogai A. Water-resistant and high oxygen-barrier nanocellulose films with interfibrillar cross-linkages formed through multivalent metal ions. Journal of Membrane Science 2016; 500: 1-7. 10.1016/j.memsci.2015.11.002

Sixta H, editor. Handbook of pulp. Weinheim: Wiley-VCH; 2006.

Sjöström E. Wood chemistry: fundamentals and applications. 2nd ed. London: Academic Press; 1993.

Sjöström E, Alén R, editors. Analytical methods in wood chemistry, pulping, and papermaking. Berlin: Springer; 1999.

Spence KL, Venditti RA, Rojas OJ, Habibi Y, Pawlak JJ. The effect of chemical composition on microfibrillar cellulose films from wood pulps: water interactions and physical properties for packaging applications. Cellulose 2010; 17(4): 835-848. 10.1007/s10570-010-9424-8

Stelte W, Sanadi AR. Preparation and characterization of cellulose nanofibers from two commercial hardwood and softwood pulps. Industrial & Engineering Chemistry Research 2009; 48(24): 11211-11219. 10.1021/ie9011672

Suopajärvi T, Sirviö JA, Liimatainen H. Nanofibrillation of deep eutectic solvent-treated paper and board cellulose pulps. Carbohydrate Polymers 2017; 169: 167-175. 10.1016/j.carbpol.2017.04.009

Syverud K, Chinga-Carrasco G, Toledo J, Toledo PG. A comparative study of Eucalyptus and Pinus radiata pulp fibres as raw materials for production of cellulose nanofibrils. Carbohydrate Polymers 2011; 84(3): 1033-1038. 10.1016/j.carbpol.2010.12.066

Technical Association of the Pulp and Paper Industry - Tappi. T 230 om-94: viscosity of pulp: capillary viscometer method. Atlanta: Tappi Press, 1999a.

Technical Association of the Pulp and Paper Industry - Tappi. T 236 om-85: kappa number of pulp. Atlanta: Tappi Press , 1999b.

Technical Association of the Pulp and Paper Industry - Tappi. T 205 sp-02: forming handsheets for physical tests of pulp. Norcross: Tappi Press, 2004a.

Technical Association of the Pulp and Paper Industry - Tappi. T 411 om-97: thickness of paper, paperboard, and combined board. Norcross: Tappi Press , 2004b.

Technical Association of the Pulp and Paper Industry - Tappi. T 441 om-98: water absorptiveness of sized (non-bibulous) paper, paperboard, and corrugated fiberboard (Cobb test). Norcross: Tappi Press , 2004c.

Toivonen MS, Kurki-Suonio S, Schacher FH, Hietala S, Rojas OJ, Ikkala O. Water-resistant, transparent hybrid nanopaper by physical cross-linking with chitosan. Biomacromolecules 2015; 16(3): 1062-1071. 10.1021/acs.biomac.5b00145

Turbak AF, Snyder FW, Sandberg KR. Microfibrillated cellulose, a new cellulose product: properties, uses, and commercial potential. Journal of Applied Polymer Science: Applied Polymer Symposium 1983; 37: 815-827.

Vandermoere F, Blanchemanche S, Bieberstein A, Marette S, Roosen J. The public understanding of nanotechnology in the food domain: the hidden role of views on science, technology, and nature. Public Understanding of Science 2011; 20(2): 195-206. 10.1177/0963662509350139

Vartiainen J, Pöhler T, Sirola K, Pylkkänen L, Alenius H, Hokkinen J et al. Health and environmental safety aspects of friction grinding and spray drying of microfibrillated cellulose. Cellulose 2011; 18(3): 775-786. 10.1007/s10570-011-9501-7

Wang H, Li D, Zhang R. Preparation of ultralong cellulose nanofibers and optically transparent nanopapers derived from waste corrugated paper pulp. BioResources 2013; 8(1): 1374-1384.

Wang W, Mozuch MD, Sabo RC, Kersten P, Zhu JY, Jin Y. Production of cellulose nanofibrils from bleached eucalyptus fibers by hyperthermostable endoglucanase treatment and subsequent microfluidization. Cellulose 2015; 22(1): 351-361. 10.1007/s10570-014-0465-2

Wise LE, Murphy M, D’Addieco AA. A chlorite holocellulose, its fractionation and bearing on summative wood analysis and studies on the hemicelluloses. Paper Trade Journal 1946; 122(2): 35-43.
 

5d5fed210e88253f45f3bb07 floram Articles
Links & Downloads

FLORAM

Share this page
Page Sections