Floresta e Ambiente
Floresta e Ambiente
Original Article Conservation of Nature

Fallow Reduces Soil Losses and Increases Carbon Stock in Caatinga

Cicero Lima de Almeida; José Carlos de Araújo; Mirian Cristina Gomes Costa; Aldênia Mendes Mascena de Almeida; Eunice Maia de Andrade

Downloads: 0
Views: 341


ABSTRACT: This study aimed at evaluating whether 10 years of fallow was sufficient to restore a degraded hillslope in the semi-arid Caatinga biome, Brazil. For this purpose, runoff, erosion, loss of nutrients and organic carbon were measured on two comparable hillslopes: one was left fallow and the other degraded caused by overgrazing. Fallow management reduced runoff (36%), soil loss (65%) and organic carbon loss (81%) in comparison with the degraded hillslope. However, the fallow did not significantly reduce nutrient loss. Animal grazing has been shown to influence the nutrient cycle in the soil. The loss of organic carbon shows significant correlation with the loss of other nutrients, and may be used to estimate nutrient loss. Results show that a decade of fallow did not promote significant changes in the loss of nutrients, but was enough to reduce runoff, erosion and loss of organic carbon.


soil recovery, land use, runoff, semi-arid


American Public Health Association – APHA. Standard methods for the examination of water and wastewater. 21st ed. Washington; 2005.

Amorim LB, Salcedo IH, Pareyn FGC, Alvarez IA. Assessment of nutrient returns in a tropical dry forest after clear-cut without burning. Nutrient Cycling in Agroecosystems 2014; 100(3): 333-343. http://dx.doi.org/10.1007/s10705-014-9646-5.

Araújo ICS, Costa MCG. Biomass and nutrient accumulation pattern of leguminous tree seedlings grown on mine tailings amended with organic waste. Ecological Engineering 2013; 60: 254-260. http://dx.doi.org/10.1016/j.ecoleng.2013.07.016.

Brazier RE, Turnbull L, Wainwright J, Bol R. Carbon loss by water erosion in drylands: implications from a study of vegetation change in the south-west USA. Hydrological Processes 2014; 28(4): 2212-2222. http://dx.doi.org/10.1002/hyp.9741.

Centro Nacional de Pesquisa de Solos – EMBRAPA. Manual de métodos de análise de solo. Rio de Janeiro: Embrapa Solos; 1997.

Costantini EAC, Branquinho C, Nunes A, Schwilch G, Stavi I, Valdecantos A et al. Soil indicators to assess the effectiveness of restoration strategies in dryland ecosystems. Solid Earth 2016; 7(2): 397-414. http://dx.doi.org/10.5194/se-7-397-2016.

Döll P, Jiménez-Cisneros B, Oki T, Arnell NW, Benito G, Cogley JG et al. Integrating risks of climate change into water management. Hydrological Sciences Journal 2015; 60(1): 4-13. http://dx.doi.org/10.1080/02626667.2014.967250.

Ebeledike EU, Nwokedi GIC, Ndu OO, Okoye FBC, Ochiogu IS. Calcium and phosphorus contents of body parts of some domestic animals used as meat source in Nigeria. Asian Pacific Journal of Tropical Medicine 2010; 3(5): 395-398. http://dx.doi.org/10.1016/S1995-7645(10)60096-X.

El Kateb H, Zhang H, Zhang P, Mosandl R. Soil erosion and surface runoff on different vegetation covers and slope gradients: a field experiment in Southern Shaanxi Province, China. Catena 2013; 105: 1-10. http://dx.doi.org/10.1016/j.catena.2012.12.012.

Ernani PR, Bayer C, Almeida JA, Cassol PC. Mobilidade vertical de cátions influenciada pelo método de aplicação de cloreto de potássio em solos com carga variável. Revista Brasileira de Ciencia do Solo 2007; 31(2): 393-402. http://dx.doi.org/10.1590/S0100-06832007000200022.

Fernandes MRM, Matricardi EAT, Almeida AQ, Fernandes MM. Mudanças do uso e de cobertura da terra na região semiárida de Sergipe. Floresta e Ambiente 2015; 22(4): 472-482. http://dx.doi.org/10.1590/2179-8087.121514.

Freitas MASR, Andrade EM, Weber OB, Palácio HAQ, Ferreira TO. Bedload sediment and nutrient losses in agro-ecosystems of the Brazilian semiarid region. Nutrient Cycling in Agroecosystems 2013; 96(2-3): 203-213. http://dx.doi.org/10.1007/s10705-013-9586-5.

Instituto Nacional de Meteorologia – INMET. Banco de Dados Meteorológicos para Ensino e Pesquisa – BDMEP [online]. Brasília, 2016 [cited 2016 aug 26]. Available from: http://www.inmet.gov.br/portal/index.php?r=bdmep/bdmep.

Kalema V. N., Witkowski E. T. F., Erasmus B. F. N., Mwavu E. N. The impacts of changes in land use on woodlands in an Equatorial African Savanna. Land Degradation and Development, 2015; 26(7): 632-641. http://dx.doi.org/10.1002/ldr.2279.

Kurz I, Coxon C, Tunney H, Ryan D. Effects of grassland management practices and environmental conditions on nutrient concentrations in overland flow. Journal of Hydrology (Amsterdam) 2005; 304(1-4): 35-50. http://dx.doi.org/10.1016/j.jhydrol.2004.07.022.

Lessa ACR, Madari BE, Paredes DS, Boddey RM, Urquiaga U, Jantalia CP et al. Bovine urine and dung deposited on Brazilian savannah pastures contribute differently to direct and indirect soil nitrous oxide emissions. Agriculture, Ecosystems & Environment 2014; 190: 104-111. http://dx.doi.org/10.1016/j.agee.2014.01.010.

Li XR, Jia XH, Dong GR. Influence of desertification on vegetation pattern variations in the cold semi-arid grasslands of Qinghai-Tibet Plateau, North-west China. Journal of Arid Environments 2006; 64(3): 505-522. http://dx.doi.org/10.1016/j.jaridenv.2005.06.011.

Manzano MG, Návar JH. Processes of desertification by goats overgrazing in the Tamaulipanthorn scrub (matorral) in north-eastern Mexico. Journal of Arid Environments 2000; 44(1): 1-17. http://dx.doi.org/10.1006/jare.1999.0577.

Medeiros PHA, Araújo JC. Temporal variability of rainfall in a semiarid environment in Brazil and its effect on sediment transport processes. Journal of Soils and Sediments 2014; 14: 1216-1223. http://dx.doi.org/10.1007/s11368-013-0809-9.

Mekuria W, Aynekulu E. Exclosure land management for restoration of the soils indegraded communal grazing lands in Northern Ethiopia. Land Degradation & Development 2013; 24(6): 528-538. http://dx.doi.org/10.1002/ldr.1146.

Menezes RSC, Sampaio EV, Giongo V, Pérez-Marin A. Biogeochemical cycling in terrestrial ecosystems of the Caatinga Biome. Brazilian Journal of Biology = Revista Brasileira de Biologia 2012;72(3, Suppl): 643-653. PMid:23011295. http://dx.doi.org/10.1590/S1519-69842012000400004.

Navarro-Hevia J, Araújo JC, Manso JM. Assessment of 80 years of ancient-badlands restoration in Saldaña, Spain. Earth Surface Processes and Landforms 2014; 39(12): 1563-1575. http://dx.doi.org/10.1002/esp.3541.

Nunes B, Bennett D, Marques S Jr. Sustainable agricultural production: an investigation in Brazilian semi-arid livestock farms. Journal of Cleaner Production 2014; 64: 414-425. http://dx.doi.org/10.1016/j.jclepro.2013.07.023.

Palacio RG, Bisigato AJ, Bouza BJ. Soil erosion in three grazed plant communities in Northeastern Patagonia. Land Degradation & Development 2014; 25(6): 594-603. http://dx.doi.org/10.1002/ldr.2289.

Príncipe A, Nunes A, Pinho P, Rosário L, Correia O, Branquinho C. Modeling the long-term natural regeneration potential of woodlands in semi-arid regions to guide restoration efforts. European Journal of Forest Research 2014; 133: 757-767. http://dx.doi.org/10.1007/s10342-014-0787-5.

Sath K, Pauly T, Holtenius K. Mineral balance of Cambodian cattle based on their faecal and urinary excretion. Journal of Animal and Veterinary Advances 2012; 11(22): 4221-4225.

Silva AML, Lopes SF, Vitorio LAP, Santiago RR, Mattos EA, Trovão DMBM. Plant functional groups of species in semiarid ecosystems in Brazil: wood basic density and SLA as an ecological indicator. Brazilian Journal of Botany 2014; 37(3): 229-237. http://dx.doi.org/10.1007/s40415-014-0063-4.

Sousa FP, Ferreira TO, Mendonca ES, Romero RE, Oliveira JGB. Carbon and nitrogen in degraded Brazilian semi-arid soils undergoing desertification. Agriculture, Ecosystems & Environment 2012; 148: 11-21. http://dx.doi.org/10.1016/j.agee.2011.11.009.

Stanchi S, Falsone G, Bonifacio E. Soil aggregation, erodibility, and erosion rates in mountain soils (NW Alps, Italy). Solid Earth 2016; 6(2): 403-414. http://dx.doi.org/10.5194/se-6-403-2015.

Tang FK, Cui M, Lu Q, Liu YG, Guo HY, Zhou JX. Effects of vegetation restoration on the aggregate stability and distribution of aggregate-associated organic carbon in a typical karst gorge region. Solid Earth 2016; 7(1): 141-151. http://dx.doi.org/10.5194/se-7-141-2016.

Trabaquini K, Formaggio AR, Galvão LS. Changes in physical properties of soils with land use time in the Brazilian savanna environment. Land Degradation and Development 2015; 26(4): 397-408. http://dx.doi.org/10.1002/ldr.2222.

Van Beek CL, Van der Salm C, Plette ACC, Van de Weerd H. Nutrient loss pathways from grazed grasslands and the effects of decreasing inputs: experimental results for three soil types. Nutrient Cycling in Agroecosystems 2009; 83: 99-110. http://dx.doi.org/10.1007/s10705-008-9205-z.

Wischmeier WH, Smith DD. Predicting rainfall erosion losses: a guide to conservation planning. Washington: USDA, 1978. 58 p. Agriculture Handbook, n. 537.

Yeomans JC, Bremner JM. A rapid and precise method for routine determination of organic carbon sin soil. Communications in Soil Science and Plant Analysis 1988; 19(13): 1467-1476. http://dx.doi.org/10.1080/00103628809368027.

Zhao H, Huang G, Ma J, Li Y, Tang L. Decomposition of aboveground and root litter for three desert herbs: mass loss and dynamics of mineral nutrients. Biology and Fertility of Soils 2014; 50(5): 745-753. http://dx.doi.org/10.1007/s00374-013-0892-5.

58ff5ac20e8825d76aabdcf4 floram Articles
Links & Downloads


Share this page
Page Sections