Floresta e Ambiente
Floresta e Ambiente
Original Article Silviculture

Carbon and nitrogen distribution pattern in soil profile cultivated with Eucalyptus

Charlote Wink; Dalvan José Reinert; Jean Paolo Gomes Minella

Downloads: 0
Views: 180


ABSTRACT: The objective of this study was to evaluate the distribution pattern of total organic carbon (TOC) and total nitrogen (TN) in the native field soil profile and Eucalyptus sp. The study was carried out in native field and in eucalyptus plantations with 20, 44, 180 and 240 months, located in Santa Maria and Manoel Viana, RS, Brazil. The decay rate (k) of the TOC and TN contents up to 1.2 m depth was determined by the graphical, numerical and mathematical method using the third order negative exponential model. The content of TOC and TN deep in the soil showed a third order negative exponential distribution. However, the methods used to estimate the decay rate generate differences in TOC and TN contents along the soil profile.


soil profile, organic matter, forest plantations


Bashkin MA, Binkley D. Changes in soil carbon following afforestation in Hawaii. Ecology 1998; 79(3): 828-833. 10.2307/176582

Bernoux M, Dominique A, Cerri CC, Bourennane H. Modelling vertical distribution of carbon in oxisols of the western Brazilian Amazon (Rondonia). Soil Science 1998; 163(12): 941-951. 10.1097/00010694-199812000-00004

Boddey RM, Jantalia CP, Conceição PC, Zanatta JA, Bayer C, Mielniczuk J et al. Carbon accumulation at depth in Ferralsols under zero-till subtropical agriculture. Global Change Biology 2010; 16(2): 784-795. 10.1111/j.1365-2486.2009.02020.x

Carvalho JLN, Avanzi JC, Silva MLN, Mello CR, Cerri CEP. Potencial de sequestro de carbono em diferentes biomas do Brasil. Revista Brasileira de Ciência do Solo 2010; 34(2): 277-289. 10.1590/S0100-06832010000200001

Charnay MP, Tuis S, Coquet Y, Barriuso E. Spatial variability in 14C-herbicide degradation in surface and subsurface soils. Pest Management Science 2005; 61(9): 845-855. 10.1002/ps.1092

Elzein A, Balesdent J. Mechanistic simulation of vertical distribution of carbon concentrations and residence times in soils. Soil Science Society of America Journal 1995; 59(5): 1328-1335. 10.2136/sssaj1995.03615995005900050019x

Fontaine S, Barot S, Barré P, Bdioui N, Mary B, Rumpel C. Stability of organic carbon in deep soil layers controlled by fresh carbon supply. Nature 2007; 450(8): 277-281. 10.1038/nature06275

Gatto A, Barros NF, Novais RF, Silva IR, Leite HG, Leite FP et al. Estoques de carbono no solo e na biomassa em plantações de eucalipto. Revista Brasileira de Ciência do Solo 2010; 34(4): 1069-1079. 10.1590/S0100-06832010000400007

Harrison RB, Footen PW, Strahm BD. Deep soils horizons: contribution and importance to soil carbon pools and in assessing whole-ecosystem response to management and global change. Forest Science 2011; 57(1): 67-76. 10.1093/forestscience/57.1.67

Hilinski T. Implementation of exponential depth distribution of organic carbon in the Century Model. 2001 [cited 2010 Apr. 1]. Available from: Available from: https://bit.ly/2QNjk3u

Jobbágy EG, Jackson RB. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecological Applications 2000; 10(2): 423-436. 10.1890/1051-0761(2000)010[0423:TVDOSO]2.0.CO;2

Meersmans J, Wesemael BV, Ridder F, Molle MV. Modelling the three-dimensional spatial distribution of soil organic carbon (SOC) at the regional scale (Flandres, Belgium). Geoderma 2009; 152(1-2): 43-52. 10.1016/j.geoderma.2009.05.015

Mestdagh I, Lootens P, Cleemput OV, Carlier L. Soil organic carbon stocks in Flemish grasslands: how accurate are they? Grass and Forage Science 2004; 59(4): 310-317. 10.1111/j.1365-2494.2004.00432.x

Mikhailova EA, Bryant RB, Vassenev II, Schwager SJ, Post CJ. Cultivation effects on soil carbon and nitrogen contents at depth in the Russian Chernozem. Soil Science Society American Journal 2000; 64(2): 738-745. 10.2136/sssaj2000.642738x

Minasny B, Mcbratnec AB, Santos MLM, Guyon B. Predicting and digital mapping of soil carbon storage in the Lower Namoi Valley. Soil Research 2006; 44(3): 233-244. 10.1071/SR05136

Moreno JA. Clima do Rio Grande do Sul. Porto Alegre: Secretaria da Agricultura; 1961.

Nakane K, Shinozaki K. A mathematical model of the behavior and vertical distribution of organic carbon in forest soils. Japanese Journal of Ecology 1978; 28(2): 111-122. 10.18960/seitai.28.2_111

Ostrowska A, Porębska G, Kanafa M. Carbon accumulation and distribution in profiles of forest soils. Polish Journal of Environment Studies 2010; 19(6): 1307-1315.

Rosa SF. Propriedades físicas e químicas de um solo arenoso sob o cultivo de Eucalyptus spp [thesis]. Santa Maria: Universidade Federal de Santa Maria; 2010.

Rosenbloom N. A hillslope evolution model for the croupled prediction of soil texture and ecosystem dynamics [thesis]. Boulder: University of Colorado; 1997.

Rosenbloom NA, Harden JW, Neff JC, Schimel DS. Geomorphic control of landscape carbon accumulation. Journal of Geophysical Research 2006; 111: 1-10. 10.1029/2005JG000077

Rufino AMM. Estoque de carbono em solos sob plantios de eucalipto e fragmento de cerrado [thesis]. Botucatu: Universidade Estadual Paulista; 2009.

Rumpel C, Kögel-Knabner I. Deep soil organic matter: a key but poorly understood component of terrestrial C cycle. Plant and Soil 2011; 338(1-2): 143-158. 10.1007/s11104-010-0391-5

Santruckova H, Kastovska E, Kolzov D, Kurbatova ML, Shibistova O, Tatarinov F et al. Vertical and horizontal variation of carbon pools and fluxes in soil profile of wet southern taiga in European Russia. Boreal Environment Research 2010; 15(3): 357-369.

Schumacher MV, Witschoreck R. Inventário de carbono em povoamentos de Eucalyptus ssp. nas propriedades fumageiras do sul do Brasil: um estudo de caso. In: Sanquetta CR, Balbinot R, Zilliotto MA, editors. Fixação de carbono: atualidades, projetos e pesquisas. Curitiba: UFPR; 2004. p. 111-124.

Smith P, Smith JU, Powlson DS, McGill WB, Arah JRM, Chertov OG et al. A comparison of the performance of nine soil organic matter models using datasets from seven long-term experiments. Geoderma 1997; 81(1-2): 153-225. 10.1016/S0016-7061(97)00087-6

Soil Survey Staff. Soil taxonomy: a basic system of soil classification for making and interpreting soil surveys. 2nd ed. Washington: Natural Resources Conservation Service; 1999.

Torn MS, Trumbore SE, Chadwick OA, Vitousek PM, Hendricks DM. Mineral control of soil organic carbon storage and turnover. Nature 1997; 389(11): 170-173. 10.1038/38260

Wang Y, Li Y, Ye X, Chu Y, Wang X. Profile storage of organic/inorganic carbon in soil: from forest to desert. Science of the Total Environment 2010; 408(8): 1925-1931. 10.1016/j.scitotenv.2010.01.015

Wink C. Estoque de carbono em plantações de Eucalyptus sp. implantados em campo nativo [thesis]. Santa Maria: Universidade Federal de Santa Maria; 2009.

Wink C. Dinâmica do carbono e nitrogênio em Argissolos com plantações de Eucalyptus sp [dissertation]. Santa Maria: Universidade Federal de Santa Maria; 2013.

Yang YH, Fang JY, Guo DL, Ji CJ, Ma WH. Vertical patterns of soil carbon, nitrogen and carbon: nitrogen stoichiometry in Tibetan grasslands. Biogeosciences Discuss 2010; 7(1): 1-24. 10.5194/bgd-7-1-2010

5d9b75e40e8825e136c12059 floram Articles
Links & Downloads


Share this page
Page Sections