Floresta e Ambiente
Floresta e Ambiente
Original Article Wood Science and Technology

Water Flow Through the Pits in Eucalyptus urophylla Wood

Thiago Campos Monteiro; José Tarcísio Lima

Downloads: 0
Views: 741


Abstract: This research aimed to evaluate the relationship between Vessel-Ray Pits (VRP) and Intervessel Pits (IVP) and water flows in the different axes of Eucalyptus urophylla wood. Samples of E. urophylla wood were used to correlate the VRP and IVP dimensions with free, adsorbed and total water flow rates. Correlations were conducted for the three axes of the wood. Results indicated that overall, it could be observed that the greater VRP and IVP in the axial axis of wood increased free water and absorbed water flows. On the one hand, the greater VRP in the radial and tangential directions reduced the free water flow and increased the absorbed water flow. On the other hand, the greater IVP in the radial and tangential directions of the wood accelerated the free water outlet and reduced the absorbed water flow. The VRP and IVP of E. urophylla wood influenced water flow according to its physical state and wood axis.


free water, adsorbed water, drying, Vessel-Ray Pit (VRP), Intervessel Pit (IVP)


Ahmed SA, Chun SK. Permeability of Tectona grandis L. as affected by wood structure. Wood Science and Technology 2011; 45(3): 487-500. http://dx.doi.org/10.1007/s00226-010-0335-5.

Alves E, Roswalka LC. Técnicas de microscopia aplicadas ao estudo da interações planta-patógeno na pós-colheita. In: Oliveira SMA, Lins SRO, Santos AMG, editors. Avanços tecnológicos na patologia pós-colheita. 1. ed. Recife: Edufrpe; 2012.

Baraúna EEP, Lima JT, Vieira RS, Silva JRM, Monteiro TC. Efeito da estrutura anatômica e química na permeabilidade da madeira de Amapá. Cerne 2014; 20(4): 529-534.

Berthold J, Rinaudo M, Salmeń L. Association of water to polar groups-estimations by an adsorption model for lignocellulosic materials. Colloids and Surfaces A: Physicochemical and Engineering Aspects 1996; 112(2-3): 117-129. http://dx.doi.org/10.1016/0927-7757(95)03419-6.

Brito AS, Vidaurre GB, Oliveira JTS, Missia da Silva JG, Rodrigues BP, Carneiro ACO. Effect of planting spacing in production and permeability of heartwood and sapwood of Eucalyptus wood. Floresta e Ambiente 2019; 26(spe1): e20180378. http://dx.doi.org/10.1590/2179-8087.037818.

Choat B, Cobb AR, Jansen S. Structure and function of bordered pits: new discoveries and impacts on whole-plant hydraulic function. The New Phytologist 2008; 177(3): 608-625. http://dx.doi.org/10.1111/j.1469-8137.2007.02317.x. PMid:18086228.

De Micco V, Balzano A, Wheeler EA, Baas P. Tyloses and gums: a review of structure, function and occurrence of vessel occlusions. IAWA Journal 2016; 37(2): 186-205. http://dx.doi.org/10.1163/22941932-20160130.

Engelund ET, Thygesen LG, Svensson S, Hill CAS. A critical discussion of the physics of wood-water interactions. Wood Science and Technology 2013; 47(1): 141-161. http://dx.doi.org/10.1007/s00226-012-0514-7.

Helmling S, Olbrich A, Heinz I, Koch G. Atlas of vessel elements. IAWA Journal 2018; 39(3): 249-352. http://dx.doi.org/10.1163/22941932-20180202.

Jansen S, Gortan E, Lens F, Lo Gullo MA, Salleo S, Scholz A et al. Do quantitative vessel and pit characters account for ion-mediated changes in the hydraulic conductance of angiosperm xylem? The New Phytologist 2011; 189(1): 218-228. http://dx.doi.org/10.1111/j.1469-8137.2010.03448.x. PMid:20840611.

Kedrov GB. Functioning wood. Wulfenia 2012; 19: 57-95.

Monteiro TC, Lima JT, Hein PRG, Silva JRM, Trugilho PF, Andrade HB. Efeito dos elementos anatômicos da madeira na secagem das toras de Eucalyptus e Corymbia. Scientia Forestalis 2017; 45(115): 493-505. http://dx.doi.org/10.18671/scifor.v45n115.07.

Monteiro TC, Lima JT, Silva JRM, Zanuncio AJV, Baraúna EEP. Water flow evaluation in Eucalyptus and Corymbia short logs. Floram 2018; 25(2): e20170659. http://dx.doi.org/10.1590/2179-8087.065917.

Nascimento TM, Monteiro TC, Baraúna EEP, Moulin JC, Azevedo AM. Drying influence on the development of cracks in Eucalyptus logs. BioResources 2019; 14(1): 220-233.

Rezende RN, Lima JT, Paula LER, Hein PRG, Silva JRM. Wood permeability in Eucalyptus grandis and Eucalyptus dunnii. Floresta e Ambiente 2018; 25(1): e20150228.

Siau JF. Flow in wood. Syracuse: Syracuse University Press; 1971.

Silva MR, Machado GO, Deiner LJ, Calil C Jr. Permeability measurements of brazilian Eucalyptus. Materials Research 2010; 13(3): 281-286. http://dx.doi.org/10.1590/S1516-14392010000300002.

Simpson W. Sorption theories applied to wood. Wood Fiber 1980; 12: 183-195.

Zanuncio AJV, Carvalho AG, Damásio RAP, Oliveira BS, Carneiro ACO, Colodette JL. Relationship between the anatomy and drying in Eucalyptus grandis x Eucalyptus urophylla wood. Revista Árvore 2016; 40(4): 723-729. http://dx.doi.org/10.1590/0100-67622016000400016.

Zanuncio AJV, Monteiro TC, Lima JT, Andrade HB, Carvalho AG. Biomass for energy use of Eucalyptus urophylla and Corymbia citriodora logs. BioResources 2013; 8(4): 5159-5168. http://dx.doi.org/10.15376/biores.8.4.5159-5168.

Zen LR, Monteiro TC, Schaeffer WA, Kaminski JM, Klitzke RJ. Secagem ao ar livre da madeira serrada de eucalipto. Journal of Biotechnology and Biodiversity 2019; 7(2): 291-298. http://dx.doi.org/10.20873/jbb.uft.cemaf.v7n2.zen.

5ed929c00e882539063ed397 floram Articles
Links & Downloads


Share this page
Page Sections