FLORAM receives Impact Factor

We are pleased to announce that FLORAM has received its first impact factor rating in the 2022 Journal Citation Reports (JCR).

Now FLORAM has the highest impact factor among Brazilian Forest Sciences journals.

Floresta e Ambiente
Floresta e Ambiente
Original Article Silviculture

The Causal Agent of Damping-off in Pinus patula (Schiede) and Pinus tecunumanii (Schwerdtf.)

Maria Alejandra Fajardo; Juan Diego León; Guillermo Antonio Correa; Juan Gonzalo Morales

Downloads: 0
Views: 1045


ABSTRACT: Damping-off is considered one of the most serious risks for production of Pinus seedlings due to the significant losses it can cause in forest nurseries. In Colombia there is little information about the etiology of this limiting disease. Different species of the genus Fusarium have been reported as causal agents, which makes the study of the pathogenicity of this genus relevant. In this study, strain 001F of Fusarium oxysporum was obtained from the diseased tissues of P. patula seedlings. The identity of the species was determined by sequencing the internal transcribed spacer (ITS) regions. Pathogenicity tests confirmed the ability of strain 001F to cause damping-off symptoms in P. patula and P. tecunumanii. Thus, F. oxysporum strain 001F represents a significant risk to produce tree species in Colombia and in other parts of the world.


Fusarium sp., forest nurseries, pathogenicity


Carrasco A, Sanfuentes E, Durán Á, Valenzuela S. Pitch canker disease a potential threat to Pinus radiata plantations in Chile? Gayana. Botánica 2016; 73(2): 369-380. http://dx.doi.org/10.4067/S0717-66432016000200369.

Claros Cuadrado JL, Baltazar Castañeda H, Trujillo Cuellar F, Flores MA. Natural durability of Pinus oocarpa and Pinus tecunumanii wood from forest stands in San Alberto, Oxapampa. Revista Forestal del Perú 2017; 32(2): 70-77. http://dx.doi.org/10.21704/rfp.v32i2.1038.

Dar GH, Beig MA, Ahanger FA, Ganai NA, Ahangar MA. Management of root rot caused by Rhizoctonia solani and Fusarium oxysporum in blue pine (Pinus wallichiana) through use of fungal antagonists. Asian Journal of Plant Pathology 2011; 5(2): 62-67. http://dx.doi.org/10.3923/ajppaj.2011.62.74.

Dean R, Van Kan J, Pretorius Z, Hammond-Kosack K, Di Pietro A, Spanu P et al. The Top 10 fungal pathogens in molecular plant pathology. Molecular Plant Pathology 2012; 13(4): 414-430. http://dx.doi.org/10.1111/j.1364-3703.2011.00783.x. PMid:22471698.

Fajardo-Mejía MA, Morales-Osorio JG, Antonio G, León-Peláez JD. Effect of plant extracts and growth substrates on controlling damping-off in Pinus tecunumanii seedlings. Cerne 2016; 22(3): 317-324. http://dx.doi.org/10.1590/01047760201622032150.

Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution; International Journal of Organic Evolution 1985; 39(4): 783-791. http://dx.doi.org/10.1111/j.1558-5646.1985.tb00420.x. PMid:28561359.

Fitza KN, Payn KG, Steenkamp ET, Myburg AA, Naidoo S. Chitosan application improves resistance to Fusarium circinatum in Pinus patula. South African Journal of Botany 2013; 85: 70-78. http://dx.doi.org/10.1016/j.sajb.2012.12.006.

Flores-Pacheco JA. Pitch canker disease (Fusarium circinatum) history, evolution, dispersion and management strategies. Nexo Revista Científica 2017; 30(01): 19-42. http://dx.doi.org/10.5377/nexo.v30i01.5170.

Fourie G, Steenkamp E, Ploetz R, Gordon T, Viljoen A. Current status of the taxonomic position of Fusarium oxysporum formae specialis cubense within the Fusarium oxysporum complex. Infection, Genetics and Evolution 2011; 11(3): 533-554. http://dx.doi.org/10.1016/j.meegid.2011.01.012. PMid:21256980.

García Díaz SE, Aldrete A, Alvarado-Rosales D, Cibrián-Tovar D, Méndez-Montiel JT, Valdovinos-Ponce G et al. Effect of Fusarium circinatum on the germination and growth of Pinus greggii seedlings on three substrates. Agrociencia 2017; 51(8): 895-908.

García Díaz SE, Cibrián Tovar D. Root rot caused by Fusarium oxysporum Schltdl in conifers. In Memoria del XV Simposio Nacional de Parasitología Forestal; 2011; Oaxaca, México. México: Colegio de Postgraduados; 2011. p. 204-207.

Gómez EA, Ríos LA, Peña JD. Madera, un potencial material lignocelulósico para la producción de biocombustibles en Colombia. Información Tecnológica 2012; 23(6): 73-86. http://dx.doi.org/10.4067/S0718-07642012000600009.

González B, Pintos C, Mansilla J, Aguín O, Pérez R. Presencia de especies de Fusarium sobre semillas de Pinus spp. en Galicia. Cuadernos de la Sociedad Española de Ciencias Forestales 2008; 26: 149-154.

Gordon TR, Swett CL, Wingfield MJ. Management of Fusarium diseases affecting conifers. Crop Protection (Guildford, Surrey) 2015; 73: 28-39. http://dx.doi.org/10.1016/j.cropro.2015.02.018.

Herrón DA, Wingfield MJ, Wingfield BD, Rodas CA, Marincowitz S, Steenkamp ET. Novel taxa in the Fusarium fujikuroi species complex from Pinus spp. Studies in Mycology 2015; 80: 131-150. http://dx.doi.org/10.1016/j.simyco.2014.12.001. PMid:26955193.

Jones N, Ford CM, Light ME, Nadel RL, Greyling I, Fourie G et al. Effect on nursery and field performance of Pinus patula seedlings after inoculation with Fusarium circinatum. Southern Forests 2014; 76(3): 125-136. http://dx.doi.org/10.2989/20702620.2014.916503.

Kanzler A, Nel A, Ford C. Development and commercialisation of the Pinus patula x P. teucnumanii hybrid in response to the threat of Fusarium circinatum. New Forests 2014; 45(3): 417-437. http://dx.doi.org/10.1007/s11056-014-9412-1.

Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution 2018; 35(6): 1547-1549. http://dx.doi.org/10.1093/molbev/msy096. PMid:29722887.

Lamichhane J, Dürr C, Schwanck A, Robin M, Sarthou J, Cellier V et al. Integrated management of damping-off diseases. Agronomy for Sustainable Development 2017; 37(2): 10. http://dx.doi.org/10.1007/s13593-017-0417-y.

Lazreg F, Belabid L, Sanchez J, Gallego E, Garrido-Cardenas J, Elhaitoum A. First report of Fusarium equiseti Causing damping-off disease on Aleppo pine in Algeria. Plant Disease 2014; 98(9): 1268-1268. http://dx.doi.org/10.1094/PDIS-02-13-0194-PDN. PMid:30699642.

López-López N, Segarra G, Vergara O, López-Fabal A, Trillas MI. Compost from forest cleaning green waste and Trichoderma asperellum strain T34 reduced incidence of Fusarium circinatum in Pinus radiata seedlings. Biological Control 2016; 95: 31-39. http://dx.doi.org/10.1016/j.biocontrol.2015.12.014.

Machón P, Pajares JA, Diez JJ, Alves-Santos FM. Influence of the ectomycorrhizal fungus Laccaria laccata on pre-emergence, post-emergence and late damping-off by Fusarium oxysporum and F. verticillioides on Stone pine seedlings. Symbiosis 2009; 49(2): 101-109. http://dx.doi.org/10.1007/s13199-009-0015-0.

Maphosa MN, Steenkamp ET, Wingfield BD. Genome-based selection and characterization of Fusarium circinatum-specific sequences. G3 (Bethesda) 2016; 6(3): 631-639. PMid:26888868.

Martínez-Álvarez P, Fernández-González RA, Sanz-Ros AV, Pando V, Diez JJ. Two fungal endophytes reduce the severity of pitch canker disease in Pinus radiata seedlings. Biological Control 2016; 94: 1-10. http://dx.doi.org/10.1016/j.biocontrol.2015.11.011.

Martín‐Rodrigues N, Sanchez‐Zabala J, Salcedo I, Majada J, González‐Murua C, Duñabeitia MK. New insights into Pinus radiata seedling root infection by Fusarium circinatum. Plant Pathology 2015; 64(6): 1336-1348. http://dx.doi.org/10.1111/ppa.12376.

Morris AR, Fourie G, Greyling I, Steenkamp ET, Jones NB. Re-use of seedling containers and Fusarium circinatum association with asymptomatic Pinus patula planting stock. Southern Forests 2014; 76(3): 177-187. http://dx.doi.org/10.2989/20702620.2014.957491.

National Center for Biotechnology Information – NCBI. U.S. National Library of Medicine [online]. USA: NBCI; 2019 [cited 2019 Sept 5]. Available from: http: // ncbi.nlm.nih.gov/BLAST

Ownley B, Trigiano R. Plant pathology concepts and laboratory exercises. 3rd ed. London: CRC Press; 2016.

Pérez A, Hermosa R, Monte E. Biocontrol activities of Trichoderma against phytopathogenic ascomycetes. Farma Journal 2017; 1(2): 85-93.

Program on Forests – PROFOR. Situación actual y potenciales de fomento de plantaciones forestales con fines comerciales en Colombia. Colombia: Reforestación Comercial Potencial del Banco Mundial/PROFOR; 2017. Informe final del Programa.

Sánchez-Cuervo AM, Aide TM, Clark ML, Etter A. Land cover change in colombia: surprising forest recovery trends between 2001 and 2010. PLoS One 2012; 7(8): e43943. http://dx.doi.org/10.1371/journal.pone.0043943. PMid:22952816.

Santos A, Trindade J, Lima C, Barbosa R, Costa A, Tiago P et al. Morphology, phylogeny, and sexual stage of Fusarium caatingaense and Fusarium pernambucanum, new species of the Fusarium incarnatum-equiseti species complex associated with insects in Brazil. Mycologia 2019; 29(2): 1-16. http://dx.doi.org/10.1080/00275514.2019.1573047. PMid:30924728.

Seseni L, Regnier T, Roux-van der Merwe MP, Mogale E, Badenhorst J. Control of Fusarium spp. causing damping-off of pine seedlings by means of selected essential oils. Industrial Crops and Products 2015; 76: 329-332. http://dx.doi.org/10.1016/j.indcrop.2015.07.002.

Steenkamp ET, Rodas CA, Kvas M, Wingfield MJ. Fusarium circinatum and pitch canker of Pinus in Colombia. Australasian Plant Pathology 2012; 41(5): 483-491. http://dx.doi.org/10.1007/s13313-012-0120-z.

Stewart JE, Abdo Z, Dumroese RK, Klopfenstein NB, Kim MS. Virulence of Fusarium oxysporum and F. commune to Douglas‐fir (Pseudotsuga menziesii) seedlings. Forest Pathology 2012; 42(3): 220-228. http://dx.doi.org/10.1111/j.1439-0329.2011.00746.x.

Swett CL, Reynolds GJ, Gordon TR. Infection without wounding and symptomless shoot colonization of Pinus radiata by Fusarium circinatum, the cause of pitch canker. Forest Pathology 2018; 48(3):1-7. https://doi.org/10.1111/efp.12422.

Tippmann S. Programming tools: adventures with R. Nature 2015; 517(7532): 109-110. http://dx.doi.org/10.1038/517109a. PMid:25557714.

Tuffley C, Timothy W, White J, Hendy M, Penny D. Correcting the apparent mutation rate acceleration at shorter time scales under a Jukes–Cantor model. Molecular Biology and Evolution 2012; 29(12): 3703-3709. http://dx.doi.org/10.1093/molbev/mss172. PMid:22790671.

Unidad de Planificación Rural Agropecuaria – UPRA. Lineamientos de política: plantaciones forestales con fines comerciales para la obtención de madera y su cadena productiva. Bogotá: UPRA; 2018 [cited 2019 Apr 5]. Available from: https://www.upra.gov.co/documents/10184/13821/PLANTACIONES+FORESTALES+CON+FINES+COMERCIALES+PARA+LA+OBTENCI%C3%93N+DE+MADERA+Y+SU+CADENA+PRODUCTIVA/051c6fbc-ae53-4bf6-8e45-a0d64939c391?version=1.1

van Dam P, de Sain M, ter Horst A, van der Gragt M, Rep M. Use of comparative genomics-based markers for discrimination of host specificity in Fusarium oxysporum. Applied and Environmental Microbiology 2018; 84(1): e01868-e17. PMid:29030446.

Vivas M, Martín JA, Gil L, Solla A. Evaluating methyl jasmonate for induction of resistance to Fusarium oxysporum, F. circinatum and Ophiostoma novo-ulmi. Forest Systems 2012; 21(2): 289-299. http://dx.doi.org/10.5424/fs/2012212-02172.

Weiland JE, Santamaria L, Grünwald NJ. Sensitivity of Pythium irregulare, P. sylvaticum, and P. ultimum from forest nurseries to mefenoxam and fosetyl-Al, and control of Pythium damping-off. Plant Disease 2014; 98(7): 937-942. http://dx.doi.org/10.1094/PDIS-09-13-0998-RE. PMid:30708838.

White TJ, Bruns T, Lee S, Taylor J. Amplification and direct sequencing of fungal rRNA genes for phylogenetics. In: Innis AM, Gelfand DH, Sninsky JJ, White TJ, editors. PCR protocols: a guide to methods and applications. San Diego: Academic Press; 1990. p. 315-322.

Zuo C, Li C, Li B, Wei Y, Hu C, Yang Q et al. The toxic mechanism and bioactive components of Chinese leek root exudates acting against Fusarium oxysporum f. sp. cubense tropical race 4. European Journal of Plant Pathology 2015; 143(3): 447-460. http://dx.doi.org/10.1007/s10658-015-0697-5.

5dc16a580e8825700ab2a977 floram Articles
Links & Downloads


Share this page
Page Sections