Floresta e Ambiente
Floresta e Ambiente
Original Article Conservation of Nature

Edaphic Macrofauna as a Recovery Indicator of Abandoned Areas of Corymbia citriodora in the Southeastern Brazil

Paola Maia Lo Sardo; Juliano Silva Lima

Downloads: 0
Views: 953


ABSTRACT: The edaphic macrofauna may reflect changes in soil use. This study aimed to answer two questions: (1) Has the management of eucalyptus by girdling, promote stimulation or inhibition in the guilds of the edaphic macrofauna? (2) Can soil macrofauna be used as an indicator of the recovery of abandoned eucalyptus areas? For that purpose, we compared the composition and diversity of the edaphic macrofauna in areas of secondary forest, abandoned non-girdled eucalyptus plantations and girdled eucalyptus plantations. The secondary forest presented greater richness, abundance and diversity of edaphic macrofauna, followed by areas of girdled eucalyptus, with the lowest values found in areas with non-girdled eucalyptus. Therefore, the edaphic macrofauna responded to the management by girdling, through the stimulation of the taxonomic groups in the different guilds and can be indicated as a good indicator of the recovery of disturbed areas.


fauna of the soil, guilds, abandoned plantations, eucalyptus, management


Amazonas NT, Viani RAG, Rego MGA, Camargo FF, Fujihara RT, Valsechi OA. Soil macrofauna density and diversity across a chronosequence of tropical forest restoration in Southeastern Brazil. Brazilian Journal of Biology = Revista Brasileira de Biologia 2018; 78(3): 449-456. http://dx.doi.org/10.1590/1519-6984.169014. PMid:29185609.

Baretta D, Santos JCP, Segat JC, Geremia EV, Oliveira LCL Fo, Alves MV. Fauna edáfica e qualidade do solo. In: Klauberg O Fo, Mafra AL, editors. Tópicos em ciência do solo. Vol. 7. Viçosa: Sociedade Brasileira de Ciência do Solo; 2011. p. 119-170.

Bartz MLC, Brown GG, Orso R, Mafra AL, Baretta D. The influence of land use systems on soil and surface litter fauna in the western region of Santa Catarina. Ciência Agronômica 2014; 45(5): 880-887. http://dx.doi.org/10.1590/S1806-66902014000500003.

Borges CHA, Souto JS, Silva ACF, Alencar LS, Limeira MQR, Santos AC et al. Edaphic arthropods in fragment of riparian forest in the semi-arid of Paraíba. The Journal of Agricultural Science 2019; 11(2): 236-243. http://dx.doi.org/10.5539/jas.v11n2p236.

Camara R, Correia MEF, Villela DM. Effects of eucalyptus plantations on soil arthropod communities in a brazilian atlantic forest conservation unit. Bioscience Journal 2012; 28(3): 445-455.

Camara R, Santos GL, Pereira MG, Silva CF, Silva VFV, Silva RM. Effects of natural atlantic forest regeneration on soil fauna, Brazil. Floresta e Ambiente 2018; 25(1): 1-10.

Castro A, Wise DH. Influence of fine woody debris on spider diversity and community structure in forest leaf litter. Biodiversity and Conservation 2009; 18(14): 3705-3731. http://dx.doi.org/10.1007/s10531-009-9674-7.

Chang L, Wang B, Liu X, Callaham MA Jr, Feng GE. Recovery of Collembola in Pinus tabulaeformis Plantations. Pedosphere 2017; 27(1): 129-137. http://dx.doi.org/10.1016/S1002-0160(15)60099-6.

Correia MEF, Camara R, Ferreira CR, Resende AS, Anjos LHC, Pereira MG. Soil fauna changes across Atlantic Forest succession. Comunicata Scientiae 2018; 9(2): 162-174. http://dx.doi.org/10.14295/cs.v9i2.2388.

Coyle DR, Nagendra UJ, Taylor MK, Campbell JH, Cunard CE, Joslin AH et al. MA. Soil fauna responses to natural disturbances, invasive species, and global climate change: current state of the science and a call to action. Soil Biology & Biochemistry 2017; 110: 116-133. http://dx.doi.org/10.1016/j.soilbio.2017.03.008.

Crotty FV, Blackshaw RP, Adl SM, Inger R, Murray PJ. Divergence of feeding channels within the soil food web determined by ecosystem type. Ecology and Evolution 2014; 4(1): 1-13. http://dx.doi.org/10.1002/ece3.905. PMid:24455156.

Cunha F No, Correira MEF, Pereira GHA, Almeida H, Pereira MG, Leles PSS. Fauna edáfica como indicador da qualidade do solo em povoamentos florestais, pastagem e floresta secundária. Revista Brasileira de Ciência do Solo 2012; 36(5): 1407-1417. http://dx.doi.org/10.1590/S0100-06832012000500004.

Diniz AR, Pereira MG, Loss A. Aporte de material decíduo nutrientes para o solo em plantio de eucalipto e floresta secundária. Pesquisa Florestal Brasileira 2011; 31(65): 19-26. http://dx.doi.org/10.4336/2011.pfb.31.65.19.

Evaristo VT, Braga JMA, Nascimento MT. Atlantic Forest regeneration in abandoned plantations of eucalypt (Corymbia citriodora (Hook.) K. D. Hill and L. A. S. Johnson) in Rio de Janeiro, Brazil. Interciencia 2011; 36(6): 431-436.

Ferreira ML, Souza LC, Conti DM, Quaresma CC, Tavares AR, Silva KG et al. Soil biodiversity in urban forests as a consequence of litterfall management: implications for São Paulo’s ecosystem services. Sustainability 2018; 684(10): 1-13. PMid:30607262.

Frainer A, Duarte MM. Soil invertebrates in southern Brazilian Araucaria forest – grassland mosaic: differences between disturbed and undisturbed areas. Iheringia: Série Zoologia 2009; 99(3): 307-312. http://dx.doi.org/10.1590/S0073-47212009000300013.

Frevolente M, Brigante J, Fogo JC, Mendonça AH. Análise da relação entre a complexidade vegetacional e as comunidades da macrofauna do solo. Revista de Biologia e Ciências da Terra 2012; 12(1): 57-69.

Garlet J, Costa EC, Boscardin J. Caracterização da fauna edáfica em plantios de Eucalyptus spp. Ciência Florestal 2013; 23(3): 337-344. http://dx.doi.org/10.5902/1980509810545.

Gerisch M, Agostinelli V, Henle K, Dziock F. More species, but all do the same: contrasting effects of flood disturbance on ground beetle functional and species diversity. Oikos 2012; 121(4): 508-515. http://dx.doi.org/10.1111/j.1600-0706.2011.19749.x.

Handa IT, Aerts R, Berendse F, Berg MP, Bruder A, Butenschoen O et al. Consequences of biodiversity loss litter decomposition across biomes. Nature 2014; 509(7499): 218-221. http://dx.doi.org/10.1038/nature13247. PMid:24805346.

Higashi M, Abe T, Burns TP. Carbon-nitrogen balance and térmite ecology. Proceedings of the Royal Society of London. Series B, Biological Sciences 1992; 249(1326): 303-308. http://dx.doi.org/10.1098/rspb.1992.0119.

Instituto Chico Mendes de Conservação da Biodiversidade – ICMBio. Plano de recuperação ambiental dos eucaliptais da Reserva Biológica União. Rio das Ostras: Reserva Biológica União, Associação Mico-leão Dourado, Critical Ecosystem Partnership Fund; 2007.

Instituto Chico Mendes de Conservação da Biodiversidade – ICMBio. Plano de manejo da Reserva Biológica União: encarte 2 análise da região da Unidade de Conservação. Rio das Ostras: Reserva Biológica União, Associação Mico-leão Dourado, Critical Ecosystem Partnership Fund; 2008.

King JR. Where do eusocial insects fit into soil food webs? Soil Biology & Biochemistry 2016; 102: 55-62. http://dx.doi.org/10.1016/j.soilbio.2016.07.019.

Kooch Y, Tavakoli M, Akbarinia M. Tree species could have substantial consequences on topsoil fauna: a feedback of land degradation/restoration. European Journal of Forest Research 2018; 137(6): 793-805. http://dx.doi.org/10.1007/s10342-018-1140-1.

Laird-Hopkins BC, Brechet LM, Trujillo BC, Sayer EJ. Tree functional diversity affects litter decomposition and arthropod community composition in a tropical forest. Biotropica 2017; 49(6): 903-911. http://dx.doi.org/10.1111/btp.12477.

Maestri R, Leite MAS, Schmitt LZ, Restello RM. Effect of native forests and forest of eucalyptus on arthropods richness in the litter. Perspectiva 2013; 37: 31-40.

Majeed MZ, Raza ABM, Afzal M, Salah-ud-Din H, Sarwar I, Yahya M et al. Differential impact of different land-use types on the population density and community assemblages of edaphic macroinvertebrates in district Sargodha, Punjab, Pakistan. Pakistan Journal of Zoology 2018; 50(3): 911-919. http://dx.doi.org/10.17582/journal.pjz/2018.50.3.911.919.

Marques DM, Silva AB, Silva LM, Moreira EA, Pinto GS. Macrofauna edáfica em diferentes coberturas vegetais. Bioscience Journal 2014; 30(5): 1588-1597.

Marx MT, Yan X, Wang X, Song L, Wang K, Zhang B et al. Soil fauna abundance, feeding and decomposition in different reclaimed and natural sites in the Sanjiang Plain Wetland, Northeast China. Wetlands 2016; 36(3): 445-455. http://dx.doi.org/10.1007/s13157-016-0753-8.

Melo FV, Brown GG, Constantino R, Louzada JNC, Luizão FJ, Morais JW et al. A importância da meso e macrofauna do solo na fertilidade e como biondicadores. Boletim Informativo da Sociedade Brasileira de Ciência do Solo 2009; 34(1): 39-43.

Nakamura A, Catterall CP, House APN, Kitching RL, Burwell CJ. The use of ants and other soil and litter arthropods as bio-indicators of the impacts of rainforest clearing and subsequent land use. Journal of Insect Conservation 2011; 11(2): 177-186. http://dx.doi.org/10.1007/s10841-006-9034-9.

Nunes LAPL, Araújo ASF, Pessoa MMC, Sousa RS, Silva JDC, Matos-Filho CHA. Edaphic fauna in a vegetation gradient in the Sete Cidades National Park. Brazilian Journal of Biology = Revista Brasileira de Biologia 2019; 79(1): 45-51. http://dx.doi.org/10.1590/1519-6984.174135. PMid:29641637.

Ober HK, Degroote LW. Effects of litter removal on arthropod communities in pine plantations. Biodiversity and Conservation 2011; 20(6): 1273-1286. http://dx.doi.org/10.1007/s10531-011-0027-y.

Quadros AF, Zimmer M. Aboveground macrodetritivores and belowground soil processes: insights on species redundancy. Applied Soil Ecology 2018; 124: 83-87. http://dx.doi.org/10.1016/j.apsoil.2017.11.008.

Rodrigues PES, Costa-Schmidt LE, Ott R, Rodrigues ENL. Influence of forest structure upon the diversity and composition of edaphic diplopods. Journal of Insect Conservation 2017; 21(2): 297-306. http://dx.doi.org/10.1007/s10841-017-9976-0.

Salomão RP, Brito LC, Iannuzzi L, Lira AFA, Albuquerque CMR. Effects of environmental parameters on beetle assemblage in a fragmented tropical rainforest of South America. Journal of Insect Conservation 2019; 23(1): 111-121. http://dx.doi.org/10.1007/s10841-018-00120-y.

Sayer EJ, Sutcliffe LME, Ross RIC, Tanner EVJ. Arthropod abundance and diversity in a lowland tropical forest floor in Panama: the role of habitat space vs. nutrient concentrations. Biotropica 2010; 42(2): 194-200. http://dx.doi.org/10.1111/j.1744-7429.2009.00576.x.

Silva CF, Martins MA, Silva EMR, Pereira MG, Correia MEF. Influência do sistema de plantio sobre atributos dendrométricos e fauna edáfica, em área degradada pela extração de argila. Revista Brasileira de Ciência do Solo 2013; 37(6): 1742-1751. http://dx.doi.org/10.1590/S0100-06832013000600030.

Silva R, Nascimento LF, Santos VC, Carregaro JB. Comparação da artropodofauna em monocultura de eucaliptos e cerrado da Flona no Distrito Federal. Ensaios e Ciência: Ciências Biológicas, Agrárias e da Saúde 2012; 16(2): 105-114.

Silva RA, Siqueira GM, Costa MKL, Guedes O Fo, Silva EFF. Spatial variability of soil fauna under different land use and managements. Revista Brasileira de Ciência do Solo 2018; 42(0): 1-18. http://dx.doi.org/10.1590/18069657rbcs20170121.

Soares SA, Antonialli-Junior WF, Lima-Junior SE. Diversidade de formigas epigéicas (Hymenoptera, Formicidae) em dois ambientes no Centro-Oeste do Brasil. Revista Brasileira de Entomologia 2010; 54(1): 76-81. http://dx.doi.org/10.1590/S0085-56262010000100009.

Suguituru SS, Silva RR, Souza DR, Munhae CB, Morini MSC. Ant community richness and composition across a gradient from Eucalyptus plantations to secondary Atlantic Forest. Biota Neotropica 2011; 11(1): 369-376. http://dx.doi.org/10.1590/S1676-06032011000100034.

Swift MJ, Bignell D, Moreira FMS, Huising J. O inventário da biodiversidade biológica do solo: conceitos e orientações gerais. In: Moreira FMS, Huising EJ, Bignell DE, editors. Manual de biologia dos solos tropicais: amostragem e caracterização da biodiversidade. Lavras: Editora UFLA; 2010.

Tacca D, Klein C, Preuss JF. Artropodofauna do solo em um bosque de eucalipto e um remanescente de mata nativa no sul do Brasil. Revista Thema 2017; 14(2): 249-261. http://dx.doi.org/10.15536/thema.14.2017.249-261.456.

Valpassos MAR, Maltoni KL, Cassiolato AMR, Nahas E. Recovery of soil microbiological properties in a degraded area planted with Corymbia citriodora and Leucaena leucocephala. Scientia Agrícola 2007; 64(1): 68-72. http://dx.doi.org/10.1590/S0103-90162007000100010.

Vasconcellos RLF, Segat JC, Bonfim JA, Baretta D, Cardoso EJBN. Soil macrofauna as an indicator of soil quality in an undisturbed riparian forest and recovering sites of different ages. European Journal of Soil Biology 2013; 58: 105-112. http://dx.doi.org/10.1016/j.ejsobi.2013.07.001.

Wardle DA, Parkinson D. Analyses of co-ocurrence in a fungal community. Mycological Research 1991; 95(4): 504-505. http://dx.doi.org/10.1016/S0953-7562(09)80855-1.

Winck BR, Sá ELS, Rigotti VM, Chauvat M. Relationship between land-use types and functional diversity of epigeic Collembola in Southern Brazil. Applied Soil Ecology 2017; 109: 49-59. http://dx.doi.org/10.1016/j.apsoil.2016.09.021.

Wu P, Wang C. Differences in spatiotemporal dynamics between soil macrofauna and mesofauna communities in forest ecosystems: the significance for soil fauna diversity monitoring. Geoderma 2019; 337: 266-272. http://dx.doi.org/10.1016/j.geoderma.2018.09.031.

Yin R, Eisenhauer N, Auge H, Purahong W, Schmidt A, Schädler M. Additive effects of experimental climate change and land use on faunal contribution to litter decomposition. Soil Biology & Biochemistry 2019; 131: 141-148. http://dx.doi.org/10.1016/j.soilbio.2019.01.009.

Zardo DC, Carneiro AP, Lima LG, Santos-Filho M. Comunidade de artrópodes associada à serrapilheira de cerrado e de mata de galeria, na estação ecológica Serra das Araras – Mato Grosso do Sul, Brasil. Revista Uniara 2010; 13(2): 105-113. http://dx.doi.org/10.25061/2527-2675/ReBraM/2010.v13i2.143.

5dc169940e88252906b2a976 floram Articles
Links & Downloads


Share this page
Page Sections