Floresta e Ambiente
https://floram.org/article/doi/10.1590/2179-8087.000318
Floresta e Ambiente
Original Article Conservation of Nature

Growth and Tolerance of Eucalyptus Seedlings in Soil Contaminated by Copper

Alex Negrini; Rodrigo Ferreira da Silva; Clovis Orlando Da Ros; Rudinei De Marco; Mateus Vanzan

Downloads: 0
Views: 54

Abstract

Abstract: Copper damages plants when present in high concentrations in the soil. This study assessed the growth and tolerance of Eucalyptus grandis, E. saligna, E. dunnii, and Corymbia citriodora seedlings in soil contaminated by copper. The experimental design was completely randomized in a factorial scheme (4 × 6), with four eucalyptus species and six copper doses (0, 80, 160, 240, 320, 400 mg kg-1) with eight replications. The experiment was performed in a greenhouse for 120 days. The height, stem diameter, root dry mass and shoot dry mass, root specific surface area, Dickson quality index, and tolerance index were assessed. The results showed that the morphological parameters of the studied eucalyptus species were reduced by the copper doses added in the soil. However, the Corymbia citriodora and the Eucalyptus saligna species had a higher tolerance index to the metal.

Keywords

tree species, exotic, heavy metal

References

Accioly AMA, Siqueira JO, Curi N, Moreira FMS. Amenização do calcário na toxidez de zinco e cádmio para mudas de Eucalyptus camaldulensis cultivadas em solo contaminado. Revista Brasileira de Ciência do Solo 2004; 28(4): 775-783. 10.1590/S0100-06832004000400017

Andreazza R, Okeke BC, Lambais MR, Bortolon L, Melo GW, Camargo FA. Bacterial stimulation of copper phytoaccumulation by bioaugmentation with rhizosphere bacteria. Chemosphere 2010; 81(9): 1149-1154. 10.1016/j.chemosphere.2010.09.047

Andreazza R, Camargo FAO, Antoniolli ZI, Quadro MS, Barcelos AA. Biorremediação de áreas contaminadas com cobre. Revista de Ciências Agrárias 2013: 36(2): 127-136.

Chaignon V, Hinsinger PA. Biotest for evaluating for bioavailability to plants in a contaminated soil. Journal of Environment Quality 2003; 32(3): 824-833. 10.2134/jeq2003.8240

Conselho Nacional do Meio Ambiente - Conama. Resolução nº 420, de 28 de dezembro de 2009. Diário Oficial da União [Internet], Brasília, DF (2009 Dec. 30) [cited 2017 Nov. 8]; Sec. 1: 81-84. Available from: Available from: https://bit.ly/2KbYnNC

De Marco R, Silva RF, Scheid DL, Da Ros CO, Silva VR. Amenizante Orgânico e Eucalyptus grandis para fitoestabilização de solo contaminado com cobre. Floresta e Ambiente 2017; 24: e00029315. 10.1590/2179-8087.029315

Dghaim R, Al Khatib S, Rasool H, Ali Khan M. Determination of heavy metals concentration in traditional herbs commonly consumed in the United Arab Emirates. Journal of Environmental and Public Health 2015; 2015(4): 1-6. 10.1155/2015/973878

Dickson A, Leaf AL, Hosner JF. Quality appraisal of white spruce and white pine seedling stock in nurseries. Forestry Chronicle 1960; 36: 10-13.

Fundação Estadual de Meio Ambiente do Rio Grande do Sul - Fepam. Portaria nº 85/2014. Dispõe sobre o estabelecimento de Valores de Referência de Qualidade (VQR) dos solos para nove elementos químicos naturalmente presentes nas diferentes províncias geomorfológicas/geológicas do estado do Rio Grande do Sul. Porto Alegre: Fepam; 2014.

Ferreira DF. SISVAR: Sistema de análise de variância. Versão 5.3. Lavras: UFLA; 2011.

Gonçalves JLM, Benedetti V. Nutrição e fertilização florestal. Piracicaba: IPEF; 2005.

Guo XY, Zuo YB, Wang BR, Li JM, Ma YB. Toxicity and accumulation of copper and nickel in maize plants cropped on calcareous and acidic field soils. Plant and Soil 2010; 333(1-2): 365-373. 10.1007/s11104-010-0351-0

Kabata-Pendias A. Trace elements in soils and plants. 4th ed. London, Boca Raton: CRC Press; 2011.

Kukkola E, Rautio P, Huttunen S. Stress indications in copper-and nickel-exposed Scots pine seedlings. Environmental and Experimental Botany 2000; 43(3): 197-210. 10.1016/S0098-8472(99)00057-x

Lequeux H, Hermans C, Lutts S, Verbruggen N. Response to copper excess in Arabidopsis thaliana: Impact on the root system architecture, hormone distribution, lignin accumulation and mineral profile. Plant Physiology and Biochemistry 2010; 48(8): 673-682. 10.1016/j.plaphy.2010.05.005

Lux A, Sottníková A, Opatrná J, Greger M. Differences in structure of adventitious roots in Salix clones with contrasting characteristics of cadmium accumulation and sensitivity. Physiologia Plantarum 2004; 120(4): 537-545. 10.1111/j.0031-9317.2004.0275.x

Macnair MR, Tilstone GH, Smith SE. The genetics of metal tolerance and accumulation in higher plants. In: Terry N, Banuelos G, editors. Phytoremediation of contaminated soil and water. Boca Raton: CRC Press; 2000. p. 235-250.

Magalhães MOL, Sobrinho NMBA, Santos FS, Mazur N. Potencial de duas espécies de eucalipto na fitoestabilização de solo contaminado com zinco. Revista Ciência Agronômica 2011; 42(3): 805-812. 10.1590/S1806-66902011000300029

Mann SS, Ritchie GSP. The influence of pH on the forms of cadmium in four west Australian soils. Australian Journal of Soil Research 1993; 31(3): 255-270. 10.1071/SR9930255

Rossi VL, Amarante CVT, Fleig FD. Crescimento e qualidade de mudas de Pinus taeda L. submetidas à poda química de raízes. Revista Ciência Florestal 2008; 18(4): 435-442. 10.5902/19805098427

Santos FS, Amaral Sobrinho NMB, Mazur M. Mecanismos de tolerância de plantas a metais pesados. In: Fernandes MS, editor. Nutrição mineral de plantas. Viçosa: SBCS; 2006. p. 420-432.

Santos GCG, Rodella AA, Abreu CA, Coscione AR. Vegetable species for phytoextraction of boron, copper, lead, manganese and zinc from contaminated soil. Scientia Agricola 2010; 67(6): 713-719. 10.1590/S0103-90162010000600014

Silva RF, Da Ros CO, Dellai A, Grolli AL, Scheid DL, Viel P. Interferência de doses de cobre no crescimento e na qualidade de mudas de Bauhinia forficata Link, Pterogyne nitens Tul e Enterolobium contortisiliquum Vell. Ciência Florestal 2016; 26(2): 647-655. 10.5902/1980509822764

Silva RF, Saidelles FLF, Silva AS, Bolzan JS. Influência da contaminação do solo por cobre no crescimento e qualidade de mudas de açoita-cavalo (Luehea divaricata Mart. Zucc.) e aroeira-vermelha (Schinus therebinthifolius Raddi). Ciência Florestal 2011; 21(1): 111-118. 10.5902/198050982753

Souza, EP, Silva IF, Ferreira LE. Mecanismos de tolerância a estresses por metais pesados em plantas. Revista Brasileira de Agrociência 2011; 17(2): 167-173. 10.18539/cast.v17i2.2046

Taiz L, Zeiger E, Møller IM, Murphy A. Fisiologia vegetal. 6th ed. Porto Alegre: Artmed; 2017.

Tedesco MJ, Gianello C, Bissani CA, Bohnen H, Volkweiss SJ. Análise de solo, plantas e outros materiais. Porto Alegre: Universidade Federal do Rio Grande do Sul; 1995.

Tennant DA. Test of a modified line intersect method of estimating root length. Journal of Ecology 1975; 63(3): 995-1001. 10.2307/2258617

United States Environmental Protection Agency - USEPA. Method 3050 B: Acid digestion of sediments, sludges, and soils. Washington: USEPA; 1996.

Wilkins DA. The measurement of tolerance to edaphic factors by means of root grown. The New Phytoogist 1978; 80(3): 623-633. 10.1111/j.1469-8137.1978.tb01595.x

Yruela I. Copper in plants: acquisition, transport and interactions. Functional Plant Biology 2009; 36(5): 409-430. 10.1071/FP08288
 


Submitted date:
01/04/2018

Accepted date:
06/30/2018

5ef60bbe0e8825c673e5dce5 floram Articles
Links & Downloads

FLORAM

Share this page
Page Sections