Floresta e Ambiente
https://floram.org/article/doi/10.1590/2179-8087-floram-2020-0060
Floresta e Ambiente
Short Communication Conservation of Nature

Comparing Data Collection Methods in Phenological Evaluations of Himatanthus drasticus

Marília Grazielly Mendes dos Santos; Lia d’; Afonsêca Pedreira de Miranda; Ligia Silveira Funch

Downloads: 0
Views: 44

Abstract

Abstract We present a case study focusing on collection methods and phenological data analyses. Qualitative, semi-quantitative, and quantitative approaches were compared in terms of their efficiencies for describing flowering and fruiting intensities and phenophase synchrony in Himatanthus drasticus growing in a gallery forest in the Chapada Diamantina mountains, Brazil. Our results showed that phenophase intensity and synchrony were respectively each best. Determined using quantitative and qualitative methods We reinforce the importance of clearly defining research aims, as quantitative data collections require considerably greater field efforts than qualitative evaluations, especially concerning forest trees.

Keywords

intensity, reproductive phenology, synchrony

References

Alexander LW, Woeste KE. Phenology, dichogamy, and floral synchronization in a northern red oak (Quercus rubra L.) seed orchard. Canadian Journal of Forest Research. 2016;46:629-36.

Alvares CA, Stape JL, Sentelhas PC, Gonçalves JLM de, Saparovek G. Köppen climate classification map for Brazil. Meteorologische Zeitschrift. 2013;22(6):711-28.

Andreacci F, Botosso PC, Galvão F. Fenologia vegetativa e crescimento de Cedrela fissilis na Floresta Atlântica, Paraná, Brasil. Floresta e Ambiente. 2017;24.

Araujo MMV, Lobo FAL. Phenology of Copernicia alba in flooded and not flooded environments. Floresta e Ambiente. 2020;27(1).

Augspurger C. Phenology, flowering synchrony, and fruit set of six neotropical shrubs. Biotropica. 1983;15:257-67.

Baldauf C, da Silva AS, Sfair JC, Ferreira R, dos Santos FAM. Harvesting increases reproductive activity in Himatanthus drasticus (Mart.) Plumel (Apocynaceae), a non-timber forest product of the Brazilian Savanna. Biotropica. 2014;46(3):341-9.

Bencke CSC, Morellato PC. Estudo comparativo da fenologia de nove espécies arbóreas em três tipos de floresta atlântica no sudeste do Brasil. Revista Brasileira de Botânica. 2002;25(2):237-48.

Bolmgren K. The use of synchronization measures in studies of plant reproductive phenology. Oikos. 1998;82:411-5.

Castro-Díez P, Milla-Gutiérrez R, Montserrat-Martí G. Comparison of methods to study plant phenological patterns. The case of Halimium atriplicifolium (Cistaceae) Phyton. 2003;43(1):59-78.

Flora do Brasil em construção. Himatanthus. .

Fournier LA. Un método cuantitativo para la medición de características fenológicas em árboles. Turrialba. 1974;24:422-3.

Frankie GW, Baker HG, Opler PA. Comparative phenological studies of trees in tropical lowland wet and dry forest in the lowlands of Costa Rica. Journal of Ecology. 1974;62:881-913.

Freitas L, Bolmgren K. Synchrony is more than overlap: measuring phenological synchronization considering time length and intensity. Revista Brasileira de Botânica. 2008;31:721-4.

Kovach WL. Oriana for Windows. 2013.

Lenza E, Klink A. Comportamento fenológico de espécies lenhosas em um cerrado sentido restrito de Brasília, DF. Revista Brasileira de Botânica. 2006;29(4):627-38.

Menezes IS, Couto-Santos APL, Funch LS. The influence of El Niño and edge effects on the reproductive phenology and floral visitors of Eschweilera tetrapetala Mori (Lecythidaceae), an endemic species of the Atlantic Forest of northeastern Brazil. Acta Botanica Brasilica. 2018;1(32):1-11.

Morellato LPC, Alberti LF, Hudson IL. Applications of circular statistics in plant phenology: a case studies approach. Phenological Research: Methods for Environmental and Climate Change Analysis. 2010.

Morellato LPC, Camargo MGG, Neves FFDE, Luize BG, Mantovai A, Hudson IL. The influence of sampling method, sample size, and frequency of observations on plant phenological patterns and interpretation in tropical forest trees. Phenological Research: Methods for Environmental and Climate Change Analysis. 2010.

Nassar JM, Ramírez N. Reproductive biology of the melon cactus, Melocactus curvispinus (Cactaceae). Plant Systematics and Evolution. 2004;248:31-44.

Newstrom LE, Frankie GW, Baker HG. A new classification for plant phenology based on flowering patterns in lowland tropical rain forest trees at La Selva, Costa Rica. Biotropica. 1994;26(2):141-59.

Pugas RM, Paz JRL da, Neves EL das, Pigozzo CM. Himatanthus bracteatus (A. DC.) Woodson (Apocynaceae): phenology, morphology, and floral biology of a species endemic to the Atlantic Forest. Hoehnea. 2018;45(3):405-12.

Rodriguez-Perez J, Traveset A. Effects of flowering phenology and synchrony on the reproductive success of a long-flowering shrub. AoB Plants. 2016;8:plw007.

Rosa JC, Mendonça AP, Ribeiro CC, Ribeiro SB. Phenological reproductive pattern of the Attalea speciosa Mart ex Spreng. in pasture area in the central region of Rondônia. Floresta. 2020;50(2):1335-44.

San Martin-Garjado I, Morellato LPC. Fenologia de Rubiaceae do sub-bosque em floresta Atlântica no sudeste do Brasil. Revista Brasileira de Botânica. 2003;26(3):299-309.

Souza IM, Funch LS. Fenologia e modos de polinização e dispersão de Fabaceae em floresta ciliar, Chapada Diamantina, Nordeste do Brasil. Sitientibus serie Ciencias Biologicas. 2015;15:1-10.

Valverde J, Gómez JM, Perfectti F. The temporal dimension in individual-based plant pollination networks. Oikos. 2016;125:468-79.

Zar JH. Biostatistical analysis. 2010.


Submitted date:
07/17/2020

Accepted date:
11/04/2020

601171740e8825a24451d83e floram Articles

FLORAM

Share this page
Page Sections