Floresta e Ambiente
Floresta e Ambiente
Original Article Forest Products Science and Tecnology

Eucalyptus globulus bark valorization: Production of fibers by Neutral Sulphite Semi-Chemical Process for Liner Paper Manufacture

Andrea Andrade; Orlando Espinoza Herrera; Pablo Reyes-Contreras; Miguel Pereira; Francisco Vásquez-Garay

Downloads: 0
Views: 40


Abstract Eucalyptus globulus is the second most important economic forest species in Chile. Its main use is in the kraft pulp industry, where large amounts of bark waste are generated. Due to its fibrous characteristics, E. globulus bark is proposed as an alternative source of fibres for papermaking. This study focuses on obtaining fibres for liner paper manufacture. A neutral sulphite semi-chemical (NSSC) process was performed, varying the sodium sulphite (5% to 16%) and the sodium carbonate (2% and 4%) concentrations using two reaction temperatures (160°C and 170°C). The NSSC process at 170°C, 16% of sulphite, and 2% of sodium carbonate proved to be the best condition to obtain higher mechanical performance of papers. As the pulping conditions become more drastic, the yield drops, and the physicomechanical properties of paper increases. Results showed that pulps from E. globulus bark could turn into source of fibres for papermaking and other related products.


Biomass valorisation, papermaking, paperboard, NSSC pulping


Ahmadi M, Latibari AJ, Faezipour M, Hedjazi S. Neutral sulphite semi-chemical pulping of rapeseed residues. TÜBITAK. 2009;34:11-6.

Bajpai P, Bajpai P. B. T.-B. H. of P., E. P. Third. Chapter 12 - Pulping Fundamentals. 2018.

Cathie K, Guest D, Mirshokraei S.A. Guide to Waste paper. 2001.

Casey P. Pulp and Paper Chemistry Technology. 1980;1.

Chaker A, Alila S, Mutjé P, Vilar MR, Boufi S. Key role of the hemicellulose content and the cell morphology on the nanofibrillation effectiveness of cellulose pulps. Cellulose. 2013;20(6):2863-75.

Dutt D, Tyagi CH. Comparison of various eucalyptus species for their morphological, chemical, pulp and paper making characteristics. Indian Journal of Chemical Technology. 2011;18:145-51.

Eugenio MA, Ibarra D, Martín-Sampedro R, Espinosa E, Bascón I, Rodríguez A. Alternative raw materials for pulp and paper production in the concept of a lignocellulosic biorefinery. 2019.

Fernandes L, Neiva D, Amaral ME, Gominho J, Pereira H, Duarte AP, Simões R. Papermaking potential of wood and pre-hydrolyzed bark of Eucalyptus globulus. 2014.

Fica A. Obtención de celulosa nanofibrilada (CNF) a partir de los finos generados durante el reciclado de papel. 2015.

Iwamoto S, Abe K, Yano H. The effect of hemicelluloses on wood pulp nanofibrillation and nanofiber network characteristics. Biomacromolecules. 2008;9(3):1022-6.

Kasmani JE, Samariha A, Nemati M. Effect of Mixing Different Contents of OCC Pulp on NSSC Pulp Strength. BioResources. 2014;9(3):5480-7.

Le Normand M, Edlund U, Ek M. Spruce bark hemicelluloses and pectins extraction and characterization. Proceedings of the 16th ISWFPC. 2011.

Lima MA, Lavorente GB, da Silva H, Bragatto J, Rezende CA, Bernardinelli OD. Effects of pretreatment on morphology, chemical composition and enzymatic digestability of eucalyptus bark: a potentially valuable source of fermentable sugars for biofuel production. Biotechnology for Biofuels. 2013;75(6).

Małachowska E, Lipkiewicz A, Niemczyk M, Dubowik M, Boruszewski P, Przybysz P. Influences of fiber and pulp properties on papermaking ability of cellulosic pulps produced from alternative fibrous raw materials. Journal of Natural Fibers. 2019.

Matsushita Y, Yamauchi K, Takabe K, Awano T, Yoshinaga A, Kato M, Kobayashi T. Enzymatic saccharification of Eucalyptus bark using hydrothermal pre-treatment with carbon dioxide. Bioresource Technology. 2010;101:4936-9.

Mendonça RT, Jara JF, Gonzalez V, Elissetche JP, Freer J. Evaluation of white root fungi Ganoderma australe and Ceriporiopsis subvermispora in biotechnological applications. Journal of Industrial Microbiology and Biotechnology. 2008;35:1323-30.

Miranda I, Gominho J, Pereira H. Incorporation of bark and tops in Eucalyptus globulus wood pulping. BioResources. 2012;7(3):4350-61.

Miranda I, Gominho J, Mirra I, Pereira H. Fractioning and chemical characterization of barks of Betula pendula and Eucalyptus globulus. Industrial Crops and Products. 2013;41:299-305.

Mokvist A, Johansen T. Refiner with means to protect the refining discs from premature wear. 1993.

Monsalve E, Pereira M, Borquez R, Berg A. Recuperación de Reactivos y Sustancias Orgánicas de Alto Peso Molecular en el Pulpaje Semiquímico al Sulfito Neutro Mediante Ultrafiltración. ATCP Chile. 2010;26(2):25.

Neiva DM, Gominho J, Pereira H. Modeling and optimization of Eucalyptus globulus bark and wood delignification using response surface methodology. BioResources. 2014;9(2):2907-21.

Neiva DM, Gominho J, Fernandes L, Lourenço A, Chemetova C, Simões RMS, Pereira H. The potential of hydrothermally pretreated industrial barks from E. globulus as a feedstock for pulp production. Journal of Wood Chemistry and Technology. 2016;36:383-92.

Neiva DM, Araújo S, Gominho J, de Cássia Carneiro A, Pereira H. Potential of Eucalyptus globulus industrial bark as a biorefinery feedstock: Chemical and fuel characterization. Industrial Crops and Products. 2018;123:262-70.

Estudio de caracterización de la cadena de producción y comercialización de la industria forestal: Estructura, agentes y prácticas. 2016.

Oveissi F, Sitter T, Fatehi P. PDADMAC as a flocculant for lignosulfonate of NSSC pulping process. Biotechnology Progress. 2016;32(3):686-91.

Pereira M, Melo R, Pereira C. Pulpaje Semiquímico de Eucaliptus (Eucaliptus nitens ex maideni). 2005.

Pereira MA, Patt R, Kordsashia O. Efecto de la carga de Sulfito de Sodio en el Pulpaje NSSC de E. globulus. Madera, Ciencia y Tecnologia. 2011;13(2):225-34.

Pirralho M, Flores D, Sousa VB, Quilhó T, Knapic S, Pereira H. Evaluation on paper making potential of nine Eucalyptus species based on wood anatomical features. Industrial Crops and Products. 2014;54:327-34.

Quilhó T, Pereira H, Richter GH. Within-Tree variation in phloem cell dimensions and proportion in Eucalyptus globulus. IAWA Journal. 2000;21(1):31-40.

Rahmaninia M, Khosravani A. Improving the paper recycling process of old corrugated container wastes. Cellulose Chemistry and Technology. 2015;49:203-8.

Reyes P, Ferraz A, Pereira M, Rodríguez J, Teixeira Mendonça R. Chemithermomechanical and kraft pulping of Pinus radiata wood chips after the hydrothermal extraction of hemicelluloses. Holzforschung. 2015;69(1):33-40.

Romani A, Larramendi A, Yañez R, Cancela A, Sánchez A, Teixeira JA, Domingues L. Valorization of Eucalyptus nitens bark by organosolv pretreatment for the production of advanced biofuels. Industrial Crops and Products. 2019;132:327-35.

Rudi H, Resalati H, Eshkiki RB, Kermanian H. Sunflower stalk neutral sulfite semi-chemical pulp: an alternative fiber source for production on fluting paper. Journal of Cleaner Production. 2016;127:562-6.

Sartori C, da Silva Mota G, Ferreira J, Miranda I, Mori AF, Pereira H. Chemical characterization of the bark of Eucalyptus urophylla hybrids in view of their valorization in biorefineries. Holzforschung. 2016;70(9):819-28.

Santos S, Villaverde JJ, Silva CM, P Neto C, Silvestre A. Supercritical fluid extraction of phenolic compounds from Eucalyptus globulus Labill bark. The Journal of Supercritical Fluids. 2012;71:71-9.

Sillero L, Prado R, Andrés MA, Labidi J. Characterization of bark of six species from mixed Atlantic forest. Industrial Crops and Products. 2019;137:276-84.

Sixta Herbert. Handbook of pulp. 2006.

Acetone extractives of wood and pulp. 1999.

Acid-insoluble lignin in wood and pulp. 2006.

Forming handsheets for physical tests of pulp. 2002.

Tensile breaking properties of paper and paperboard. 2001.

Bursting strength of paper. 2002.

Internal tearing resistance of paper. 2004.

Flat crush of corrugating medium (CMT test). 1999.

Ring crush of paperboard (RCT test). 1997.

Vázquez G, Fontenla E., Santos J, Freire MS, González-Álvarez J, Antorrena G. Antioxidant activity and phenolic content of chestnut (Castanea sativa) shell and eucalyptus (Eucalyptus globulus) bark extracts. Industrial Crops and Products. 2008;28(3):279-85.

Yang X, Berglund LA. Recycling without fiber degradation-strong paper structures for 3D forming based on nanostructurally tailored wood holocellulose fibers. ACS Sustainable Chemistry and Engineering. 2020;8:1146-54.

Young RA. Comparison of the properties of chemical cellulose pulps. Cellulose. 1994;1(2):107-30.

Submitted date:

Accepted date:

605cc83ea953954007667763 floram Articles


Share this page
Page Sections