Floresta e Ambiente
https://floram.org/article/doi/10.1590/2179-8087-FLORAM-2022-0088
Floresta e Ambiente
Original Article Silviculture

Selecting Native Species for Soil and Water Bioengineering Techniques: Alternative to Restore Areas in Brumadinho, MG, Brazil

Paula Letícia Wolff Kettenhuber, Diego Aniceto dos Santos Oliveira, Sebastião Venâncio Martins

Downloads: 3
Views: 483

Abstract

Soil and water bioengineering (SWBE) is a feasible, economical and ecologically friendly alternative to restore the riparian forest areas affected by the Brumadinho mining tailings dam rupture. We evaluated the vegetative propagation capacity by cuttings and initial development of nine native riparian species of the Paraobepa River for use in SWBE techniques. From the results it is possible to separate the species into two distinct groups, namely those that can resprout and produce roots from their cuttings (group 1: Acnistus arborescens (L.) Schltdl., Croton urucurana Baill., Gymnanthes schottiana Müll.Arg., Indigofera suffruticosa Mill. and Sesbania virgata (Cav.) Poir.) and are suitable for use as live cuttings in SWBE techniques; and those which were only able to produce shoots (group 2: Casearia decandra Jacq., Chrysophyllum marginatum (Hook. & Arn.) Radlk., Inga vera Willd. and Schinus terebinthifolia Raddi) and should only be used in seedling form to increase the diversity of the interventions.

Keywords

Nature-based solution, riparian forest, cuttings, resprouting, rooting.

References

  • Alvares CA, Stape JL, Sentelhas PC, Gonçalves JLM, Sparovek G. Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift 2013; 22(6):711-728. https://doi.org/10.1127/0941-2948/2013/0507
    » https://doi.org/10.1127/0941-2948/2013/0507

  • Araújo-Filho RN, Holanda FSR, Andrade KR. Implementation of soil bioengineering techniques for erosion control of the Lower São Francisco, Sergipe State. Scientia Plena 2013; 9(7):1-9

  • Araujo EC de, Mendonça AVR, Barroso DG, Lamônica KR, Silva RF da. Caracterização morfológica de frutos, sementes e plântulas de Sesbania virgata (Cav.) Pers. Revista Brasileira de Sementes 2004; 26(1): 105-110. https://doi.org/10.1590/s0101-31222004000100016
    » https://doi.org/10.1590/s0101-31222004000100016

  • Aximoff IA, Soares HM, Bernadello G. Acnistus arborescens (Solanaceae): An important food resource for birds in an Atlantic Forest site, Southeastern Brazil. Rodriguesia 2020; 71: e02232018. 2020. https://doi.org/10.1590/2175-7860202071030
    » https://doi.org/10.1590/2175-7860202071030

  • Bischetti GB, De Cesare G, Mickovski SB, Rauch HP, Schwarz M, Stangl R. Design and temporal issues in Soil Bioengineering structures for the stabilisation of shallow soil movements. Ecological Engineering 2021; 169:106309. https://doi.org/10.1016/j.ecoleng.2021.106309
    » https://doi.org/10.1016/j.ecoleng.2021.106309

  • Bochet E, García-Fayos P. Identifying plant traits: A key aspect for species selection in restoration of eroded roadsides in semiarid environments. Ecological Engineering 2015; 83: 444-451. https://doi.org/10.1016/j.ecoleng.2015.06.019
    » https://doi.org/10.1016/j.ecoleng.2015.06.019

  • Boldrin D, Leung AK, Bengough AG. Correlating hydrologic reinforcement of vegetated soil with plant traits during establishment of woody perennials. Plant Soil 2017; 416(1-2): 437-451. https://doi.org/10.1007/s11104-017-3211-3
    » https://doi.org/10.1007/s11104-017-3211-3

  • Carpenter LT, Pezeshki SR, Shields FD. Responses of nonstructural carbohydrates to shoot removal and soil moisture treatments in Salix nigra Trees 2008; 22(5): 737-748. https://doi.org/10.1007/s00468-008-0234-7
    » https://doi.org/10.1007/s00468-008-0234-7

  • Carvalho PER. Espécies Arbóreas Brasileiras. 4th ed. Colombo: Embrapa Florestas; 2010

  • Carvalho PER. Espécies Arbóreas Brasileiras . 5th ed. Colombo: Embrapa Florestas ; 2014

  • Carvalho PER. Espécies Arbóreas Brasileiras . 3rd edn. Colombo: Embrapa Florestas ; 2008

  • Carvalho PER. Espécies Arbóreas Brasileiras . 1st edn. Colombo: Embrapa Florestas ; 2003

  • da Silva CMS, Vital BR, Carneiro A de CO, Oliveira AC, Araújo SO, de Magalhães, MA. Age of stock plants, seasons and iba effect on vegetative propagation of Ilex paraguariensis Revista Arvore 2017; 41(4):1-7. https://doi.org/10.1590/1806-90882017000200004
    » https://doi.org/10.1590/1806-90882017000200004

  • Davanso-Fabro VM, Medri ME, Bianchini E, Pimenta JA. Tolerância à inundação: Aspectos da anatomia ecológica e do desenvolvimento de Sesbania virgata (Cav.) Pers. (Fabaceae). Brazilian Archives of Biology and Technology 1998; 41(4): 475-482. https://doi.org/10.1590/s1516-89131998000400012
    » https://doi.org/10.1590/s1516-89131998000400012

  • Davies FT, Geneve RL, Wilson SB. Hartmann and Kester’s Plant Propagation Principles and Practices. 9th ed. New York: Pearson; 2017

  • de Oliveira MC, Ribeiro JF. Rooting cuttings of Euplassa inaequalis (Pohl) Engl. in gallery forest specie in different seasons Enraizamento de estacas de Euplassa inaequalis (Pohl) Engl. de mata de galeria em diferentes estações do ano. Bioscience Journal 2013; 29(4): 991-999

  • Dewes JJ, Maffra CRB, Sousa R dos S, Sutili FJ. Survival evaluation and soil reinforcement capacity of five reophytes species of the Atlantic rainforest biome. Floresta 2019; 49(3):477-484. https://doi.org/10.5380/rf.v49i3.59281
    » https://doi.org/10.5380/rf.v49i3.59281

  • Dias PC, Oliveira LS de, Xavier A, Wendling I. Estaquia e miniestaquia de espécies florestais lenhosas do Brasil. Pesquisa Florestal Brasileira 2012; 32(72): 453-462. https://doi.org/10.4336/2012.pfb.32.72.453
    » https://doi.org/10.4336/2012.pfb.32.72.453

  • Díaz-Páez M, Werden LK, Zahawi RA, Usuga J, Polanía J. Vegetative propagation of native tree species: an alternative restoration strategy for the tropical Andes. Restoration Ecology 2021; 30(7). https://doi.org/10.1111/rec.13611
    » https://doi.org/10.1111/rec.13611

  • Durlo MA, Sutili FJ. Bioengenharia: Manejo biotécnico de cursos de água. 3rd ed. Santa Maria: Edição do Autor; 2014

  • Erktan A, Cécillon L, Roose E, Frascaria-Lacoste N, Rey F. Morphological diversity of plant barriers does not increase sediment retention in eroded marly gullies under ecological restoration. Plant Soil 2013; 370(1-2): 653-669. https://doi.org/10.1007/s11104-013-1738-5
    » https://doi.org/10.1007/s11104-013-1738-5

  • Evette A, Balique C, Lavaine C, Rey F, Prunier P. Using ecological and biogeographical features to produce a typology of the plant species used in bioengineering for riverbank protection in Europe. River Research and Applications 2012; 28(10):1830-1842. https://doi.org/10.1002/rra.1560
    » https://doi.org/10.1002/rra.1560

  • Fachinello JC, Hoffmann A, Nachtigal JC, Kersten E, Fortes GRL. Propagação de plantas frutíferas de clima temperado. Pelotas: Editora e Gráfica UFPel; 1995

  • Ferreira EB, Cavalcanti PP, Nogueira DA. ExpDes: An R Package for ANOVA and Experimental Designs. Applied Mathematics 2014; 05(19):2952-2958. https://doi.org/10.4236/am.2014.519280
    » https://doi.org/10.4236/am.2014.519280

  • Fort F, Jouany C, Cruz P. Hierarchical traits distances explain grassland Fabaceae species’ ecological niches distances. Frontiers in Plant Science 2015; 6:63. https://doi.org/10.3389/fpls.2015.00063
    » https://doi.org/10.3389/fpls.2015.00063

  • Fremier AK, Kiparsky M, Gmur S, Aycrigg J, Craig RK, Svancara LK, et al. A riparian conservation network for ecological resilience. Biological Conservation 2015; 191:29-37. https://doi.org/10.1016/j.biocon.2015.06.029
    » https://doi.org/10.1016/j.biocon.2015.06.029

  • Freschet GT, Pagès L, Iversen CM, Comas LH, Rewald B, Roumet C, et al. A starting guide to root ecology: strengthening ecological concepts and standardising root classification, sampling, processing and trait measurements. New Phytologist 2021a; 232(2):973-1122. https://doi.org/10.1111/nph.17572
    » https://doi.org/10.1111/nph.17572

  • Freschet GT, Roumet C, Comas LH, Weemstra M, Bengough AG, Rewald B, et al. Root traits as drivers of plant and ecosystem functioning: current understanding, pitfalls and future research needs. New Phytologist 2021b; 232(3):1123-1158. https://doi.org/10.1111/nph.17072
    » https://doi.org/10.1111/nph.17072

  • García-Martínez M, Valenzuela-González JE, Escobar-Sarria F, López-Barrera F, Castaño-Meneses G. The surrounding landscape influences the diversity of leaf-litter ants in riparian cloud forest remnants. PLoS One 2017; 12(2):1-19. https://doi.org/10.1371/journal.pone.0172464
    » https://doi.org/10.1371/journal.pone.0172464

  • Gastauer M, Sarmento PS de M, Santos VCA, Caldeira CF, Ramos, SJ, Teodoro GS, et al. Vegetative functional traits guide plant species selection for initial mineland rehabilitation. Ecological Engineering 2020; 148:105763. https://doi.org/10.1016/j.ecoleng.2020.105763
    » https://doi.org/10.1016/j.ecoleng.2020.105763

  • Ghestem M, Cao K, Ma W, Rowe N, Leclerc R, Gadenne C, et al. A framework for identifying plant species to be used as “ecological engineers” for fixing soil on unstable slopes. PLoS One 2014; 9(8): e95876. https://doi.org/10.1371/journal.pone.0095876
    » https://doi.org/10.1371/journal.pone.0095876

  • Hogan JA, Valverde-Barrantes OJ, Ding Q, Xu H, Baraloto C. Morphological variation of fine root systems and leaves in primary and secondary tropical forests of Hainan Island, China. Annals of Forest Science 2020; 77(3):79. https://doi.org/10.1007/s13595-020-00977-7
    » https://doi.org/10.1007/s13595-020-00977-7

  • Holanda FSR, Araújo Filho RN de, Pedrotti A, Wilcox BP, Marino RH, Santos LDV. Soil bioengineering in northeastern Brazil: An Overview. Ambiente e Agua - An Interdisciplinary Journal of Applied Science 2021; 16(4):1. https://doi.org/10.4136/ambi-agua.2650
    » https://doi.org/10.4136/ambi-agua.2650

  • Holanda FSR, Vieira TRS, Araújo Filho RN de, Santos TO, Andrade KVS de, Conceição FG da. Propagation through cutting technique of species ocurring in the Lower São Francisco River in Sergipe State with different concentrations of indolbutiric acid. Revista Árvore 2012; 36(1):75-82. https://doi.org/10.1590/s0100-67622012000100009
    » https://doi.org/10.1590/s0100-67622012000100009

  • Hudek C, Sturrock CJ, Atkinson BS, Stanchi S, Freppaz M. Root morphology and biomechanical characteristics of high altitude alpine plant species and their potential application in soil stabilization. Ecological Engineering 2017; 109:228-239. https://doi.org/10.1016/j.ecoleng.2017.05.048
    » https://doi.org/10.1016/j.ecoleng.2017.05.048

  • Hunolt AE, Brantley EF, Howe JA, Wright AN, Wood CW. Comparison of native woody species for use as live stakes in streambank stabilization in the southeastern United States. Journal of Soil and Water Conservation 2013; 68(5):384-391. https://doi.org/10.2489/jswc.68.5.384
    » https://doi.org/10.2489/jswc.68.5.384

  • Inoue MT, Putton V. Macropropagacao de 12 especies arboreas da floresta ombrofila mista. Floresta 2007; 37(1):55-61

  • Janssen P, Cavaillé P, Bray F, Evette A. Soil bioengineering techniques enhance riparian habitat quality and multi-taxonomic diversity in the foothills of the Alps and Jura Mountains. Ecological Engineering 2019; 133:1-9. https://doi.org/10.1016/j.ecoleng.2019.04.017
    » https://doi.org/10.1016/j.ecoleng.2019.04.017

  • Kettenhuber PLW, Sousa RS, Denardi L, Sutili FJ. Plantas lenhosas com potencial biotécnico para uso em obras de engenharia natural no Brasil. Ciência e Ambiente 2017; 46/47:95-110

  • Kettenhuber PW, Sousa R, Sutili F. Vegetative propagation of Brazilian native species for restoration of degraded areas. Floresta e Ambiente 2019; 26(2): e20170956. https://doi.org/10.1590/2179-8087.095617
    » https://doi.org/10.1590/2179-8087.095617

  • Lammeranner W, Rauch HP, Laaha G. Implementation and monitoring of soil bioengineering measures at a landslide in the Middle Mountains of Nepal. Plant and Soil 2005; 278(1-2):159-170. https://doi.org/10.1007/s11104-005-7012-8
    » https://doi.org/10.1007/s11104-005-7012-8

  • Letty BA, Makhubedu T, Scogings PF, Mafongoya P. Effect of cutting height on non-structural carbohydrates, biomass production and mortality rate of pigeon peas. Agroforestry Systems 2021; 95(4):659-667. https://doi.org/10.1007/s10457-021-00616-8
    » https://doi.org/10.1007/s10457-021-00616-8

  • Liu Y, Rauch HP, Zhang J, Yang X, Gao J. Development and soil reinforcement characteristics of five native species planted as cuttings in local area of Beijing. Ecological Engineering 2014; 71:190-196. https://doi.org/10.1016/j.ecoleng.2014.07.017
    » https://doi.org/10.1016/j.ecoleng.2014.07.017

  • Lorenzi H. Árvores Brasileiras: manual de identificação e cultivo de plantas arbóreas nativas do Brasil, 2nd ed. Nova Odessa: Editora Plantarum; 1998

  • Maffra CRB, Sousa RDS, Pinheiro RJB, Sutili FJ (2021) Evaluation of the relationship between morphological characteristics and pullout resistance of live cuttings of Phyllanthus sellowianus (Klotzsch) Müll.Arg. Floresta 2021; 51(2):329. https://doi.org/10.5380/rf.v51i2.65159
    » https://doi.org/10.5380/rf.v51i2.65159

  • Marchiori JNC. Dendrologia das angiospermas - das Bixáceas às Rosáceas. Santa Maria: Editora da UFSM; 2000

  • Martins SV, Villa PM, Nabeta FH, Silva LF da, Kruschewsky GC, Dias AA. Study on site preparation and restoration techniques for forest restoration in mining tailings of Mariana, Brazil. Research in Ecology 2020; 2(4). https://doi.org/10.30564/re.v2i4.2610
    » https://doi.org/10.30564/re.v2i4.2610

  • Maxwald M, Crocetti C, Ferrari R, Petrone A, Rauch HP, Preti F. (2020) Soil and water bioengineering applications in central and South America: A transferability analysis. Sustainability 2020; 12(24):1-31. https://doi.org/10.3390/su122410505
    » https://doi.org/10.3390/su122410505

  • Mira E, Rousteau A, Tournebize R, Robert M, Evette A. Evaluating the suitability of neotropical trees and shrubs for soil and water bioengineering: Survival and growth of cuttings from ten Caribbean species. Ecological Engineering 2022; 185: 106808. https://doi.org/10.1016/j.ecoleng.2022.106808
    » https://doi.org/10.1016/j.ecoleng.2022.106808

  • Mira E, Evette A, Labbouz L, Robert M, Rousteau A, Tournebize. Investigation of the asexual reproductive characteristics of native species for soil bioengineering in the West Indies. Journal of Tropical Forest Science 2021; 33(3):333-342. https://doi.org/10.26525/jtfs2021.33.3.333
    » https://doi.org/10.26525/jtfs2021.33.3.333

  • Moraes AB, Wilhelm AE, Boelter T, Stenert C, Schulz UH, Maltchik L. Reduced riparian zone width compromises aquatic macroinvertebrate communities in streams of southern Brazil. Environmental Monitoring and Assessment 2014; 186(11):7063-7074. https://doi.org/10.1007/s10661-014-3911-6
    » https://doi.org/10.1007/s10661-014-3911-6

  • Moreira HJ da C, Bragança HBN. Manual de identificação de plantas infestantes: Arroz. São Paulo: FMC Agricultural Products; 2010

  • Owusu SA, Opuni-Frimpong E, Antwi-Boasiako C. Improving regeneration of mahogany: Techniques for vegetative propagation of four African mahogany species using leafy stem cuttings. New Forests 2014; 45(5):687-697. https://doi.org/10.1007/s11056-014-9431-y
    » https://doi.org/10.1007/s11056-014-9431-y

  • Pilatti DM. Ecological fitting em Schinus terebinthifolius Raddi: entendendo o processo de dispersão e invasão da espécie [tese]. Curitiba: rograma de Pós-Graduação em Ecologia e Conservação, Universidade Federal do Paraná; 2018

  • Preti F, Capobianco V, Sangalli P. Soil and Water Bioengineering (SWB) is and has always been a nature-based solution (NBS): a reasoned comparison of terms and definitions. Ecological Engineering 2022; 181:106687. https://doi.org/10.1016/j.ecoleng.2022.106687
    » https://doi.org/10.1016/j.ecoleng.2022.106687

  • Ramos-Palacios R, Orozco-Segovia A, Sánchez-Coronado ME, Barradas VL. Vegetative propagation of native species potentially useful in the restoration of Mexico City’s vegetation. Revista Mexicana de Biodiversidad 2012; 83(3):809-816. https://doi.org/10.7550/rmb.21610
    » https://doi.org/10.7550/rmb.21610

  • Rauch HP, von der Thannen M, Raymond P, Mira E, Evette A. Ecological challenges* for the use of soil and water bioengineering techniques in river and coastal engineering projects. Ecological Engineering 2022; 176:106539. https://doi.org/10.1016/j.ecoleng.2021.106539
    » https://doi.org/10.1016/j.ecoleng.2021.106539

  • RCoreTeam. R: A Language and Environment for Statistical Computing. 2022

  • Reubens B, Poesen J, Danjon F, Geudens G, Muys B. The role of fine and coarse roots in shallow slope stability and soil erosion control with a focus on root system architecture: A review. Trees - Structure and Function 2007; 21(4):385-402. https://doi.org/10.1007/s00468-007-0132-4
    » https://doi.org/10.1007/s00468-007-0132-4

  • Rey F, Bifulco C, Bischetti GB, Bourrier F, De Cesare G, Florineth F, et al. Soil and water bioengineering: Practice and research needs for reconciling natural hazard control and ecological restoration. Science of the Total Environment 2019; 648:1210-1218. https://doi.org/10.1016/j.scitotenv.2018.08.217
    » https://doi.org/10.1016/j.scitotenv.2018.08.217

  • Rieger I, Lang F, Kowarik I, Cierjacks A. The interplay of sedimentation and carbon accretion in riparian forests. Geomorphology 2014; 214:157-167. https://doi.org/10.1016/j.geomorph.2014.01.023
    » https://doi.org/10.1016/j.geomorph.2014.01.023

  • Rocha IP da, Holanda FSR, Rolim MM, Pedrotti A, Moura MM, Santos LDV. Direct shear strength on the São Francisco river bank, Northeastern Brazil, with or without roots of different native species. Journal of Agricultural Studies 2021; 9(1):146. https://doi.org/10.5296/jas.v9i1.17938
    » https://doi.org/10.5296/jas.v9i1.17938

  • Rotta LHS, Alcântara E, Park E, Negri RG, Lin YN, Bernardo N, et al. The 2019 Brumadinho tailings dam collapse: Possible cause and impacts of the worst human and environmental disaster in Brazil. International Journal of Applied Earth Observation and Geoinformation 2020; 90:102119. https://doi.org/10.1016/j.jag.2020.102119
    » https://doi.org/10.1016/j.jag.2020.102119

  • Santana IDM, Holanda FSR, Filho RNA, Cruz, JFV, Menezes, AHB, Soares, TFSN, et al. Potencial biotécnico das espécies Aroeira Schinus terebinthifolius Raddi e Sabiá Mimosa caesalpiniaefolia Benth para recuperação de taludes marginais no baixo São. Scientia Plena 2012; 8(4):1-5

  • Schiechtl H. Bioingegneria Forestale. basi - materiali da construzioni vivi - metodi. Itália: Edizione Castaldi-Feltre; 1973

  • Schmitt K, Schäffer M, Koop J, Symmank L. River bank stabilisation by bioengineering: potentials for ecological diversity. Journal of Applied Water Engineering and Research 2018; 6(4):262-273. https://doi.org/10.1080/23249676.2018.1466735
    » https://doi.org/10.1080/23249676.2018.1466735

  • Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nature Methods 2012; 9(7):671-675. https://doi.org/10.1038/nmeth.2089
    » https://doi.org/10.1038/nmeth.2089

  • Silva AC da, Higuchi P, Berg E van den, Nunes MH, Carvalho DA de. Florestas inundáveis: Ecologia, Florística e Adaptações das Espécies. Lavras: Editora UFLA; 2012

  • Sousa RS, Sutili FJ. Aspectos técnicos das plantas em engenharia natural. Ciência & Ambiente 2017; 46/47:31-71

  • Stokes A, Atger C, Bengough AG, Fourcaud T, Sidle RC. Desirable Plant root traits for protecting natural and engineered slopes against landslides. Plant and Soil 2009; 324(1):1-30. https://doi.org/10.1007/s11104-009-0159-y
    » https://doi.org/10.1007/s11104-009-0159-y

  • Stokes A, Douglas GB, Fourcaud T, Giadrossich F, Gillies C, Hubble T, et al. Ecological mitigation of hillslope instability: Ten key issues facing researchers and practitioners. Plant and Soil 2014; 377:1-23. https://doi.org/10.1007/s11104-014-2044-6
    » https://doi.org/10.1007/s11104-014-2044-6

  • Stuepp CA, Wendling I, Xavier A, Zuffellato-Ribas KC. Vegetative propagation and application of clonal forestry in Brazilian native tree species. Pesquisa Agropecuaria Brasileira 2018; 53(9):985-1002. https://doi.org/10.1590/S0100-204X2018000900002
    » https://doi.org/10.1590/S0100-204X2018000900002

  • Sutili FJ, Denardi L, Durlo MA, Rauch HP, Weissteiner C. Flexural behaviour of selected riparian plants under static load. Ecological Engineering 2012; 43:85-90. https://doi.org/10.1016/j.ecoleng.2012.02.012
    » https://doi.org/10.1016/j.ecoleng.2012.02.012

  • Sutili FJ, Dorneles R da S, Vargas CO, Kettenhuber PLW. Avaliação da propagação vegetativa de espécies na estabilização de obras de terra com técnicas de Engenharia Natural. Ciência Florestal 2018; 28(1):1-12

  • Sutili FJ, Gavassoni E. The development of Soil Bioengineering as an analytical discipline. Ciência & Ambiente 2017; 46/47:5-31

  • Thompson F, de Oliveira BC, Cordeiro MC, Masi BP, Rangel TP, Paz P, et al. Severe impacts of the Brumadinho dam failure (Minas Gerais, Brazil) on the water quality of the Paraopeba River. Science of the Total Environment 2020; 705:1-6. https://doi.org/10.1016/j.scitotenv.2019.135914
    » https://doi.org/10.1016/j.scitotenv.2019.135914

  • Tisserant M, Janssen P, Evette A, González E, Cavaillé P, Poulin M. Diversity and succession of riparian plant communities along riverbanks bioengineered for erosion control: a case study in the foothills of the Alps and the Jura Mountains. Ecological Engineering 2020; 152: 105880. https://doi.org/10.1016/j.ecoleng.2020.105880
    » https://doi.org/10.1016/j.ecoleng.2020.105880

  • Verçoza FC, Dias AR, Missagia CCC. Ecologia da polinização e potenciais dispersores da “marianeira” - Acnistus arborescens (L.) Schltdl. (Solanaceae) em área de Floresta Atlântica do Rio de Janeiro. Natureza online 2012; 10(2):59-64

  • Vieira DLM, Coutinho AG, Da Rocha GPE. Resprouting ability of dry forest tree species after disturbance does not relate to propagation possibility by stem and root cuttings. Restoration Ecology 2013; 21(3): 305-311. https://doi.org/10.1111/j.1526-100X.2012.00935.x
    » https://doi.org/10.1111/j.1526-100X.2012.00935.x

  • von der Thannen M, Hoerbinger S, Muellebner C, Biber H, Rauch HP. Case study of a water bioengineering construction site in Austria. Ecological aspects and application of an environmental life cycle assessment model. International Journal of Energy and Environmental Engineering 2021; 12(4): 599-609. https://doi.org/10.1007/s40095-021-00419-8
    » https://doi.org/10.1007/s40095-021-00419-8

  • Weissteiner C, Schenkenbach N, Lammeranner W, Kalny G, Rauch HP. Cutting diameter on early growth performance of purple willow (Salix purpurea L.). Journal of Soil and Water Conservation 2019; 74(4):380-388. https://doi.org/10.2489/jswc.74.4.380
    » https://doi.org/10.2489/jswc.74.4.380

  • Zaimes GN, Tardio G, Iakovoglou V, Gimenez M, Garcia-Rodriguez JL, Sangalli P. New tools and approaches to promote soil and water bioengineering in the Mediterranean. Science of the Total Environment 2019; 693:133677. https://doi.org/10.1016/j.scitotenv.2019.133677
    » https://doi.org/10.1016/j.scitotenv.2019.133677

  • Zhang H, Zhao Z, Ma G, Sun L. Quantitative evaluation of soil anti-erodibility in riverbank slope remediated with nature-based soil bioengineering in Liaohe River, Northeast China. Ecological Engineering 2020; 151:105840. https://doi.org/10.1016/j.ecoleng.2020.105840
    » https://doi.org/10.1016/j.ecoleng.2020.105840


Submitted date:
11/30/2022

Accepted date:
08/01/2023

6500b4faa9539563f34bb862 floram Articles

FLORAM

Share this page
Page Sections