Floresta e Ambiente
https://floram.org/article/doi/10.1590/2179-8087-FLORAM-2022-0013
Floresta e Ambiente
Original Article Forest Products Science and Tecnology

Effect of the Performance of Lignin Into the Matrix of the TiO2 with Application on DSSCs

Edwalder Silva Teixeira, Vanja Fontenele Nunes, Diego Caitano Pinho, Paulo Herbet França Maia Júnior, Francisco Marcone Lima, Men de Sá Moreira de Souza Filho, Ana Fabíola Leite Almeida, Francisco Nivaldo Aguiar Freire

Downloads: 1
Views: 93

Abstract

Founding new materials and structures for solar cells is a challenge in the photovoltaic field. This work evaluated the effect of the lignin in the photovoltaic activity by compounding with TiO2/lignin as photoanode for the dye sensitized solar cells (DSSC’s). Hybrid films (TiO2/lignin) with different concentrations of lignin (5, 10 and 15%) were deposited by spin coating over commercial TiO2 thin films. The cells were sandwich assembled. The characterizations were done through analysis of absorbance, band gap, x-ray diffraction, morphological and electrical. The lignin at 15% reduced the TiO2 band gap from 3.66 to 2.84 eV, favoring the short current density to 11.06 mA/cm2 and efficiency of 4.65%, an increase of 103.95% compared to the TiO2 structure without lignin.

Keywords

Lignin; TiO2; DSSCs; Spin coating

References

  • Abbas Q, Ilyas S, Saleem M, Alvi F, Din RU, Shahzad M, Sultana I and Razaq A. Fabrication and Characterization of Metal Oxide and Lignocelluloses Fibers based Working Electrode for Dye-Sensitized Solar Cells (DSSCs). Materials Research Express 2020; 6(12) : 1-15.

  • Aba-Guevara, Cinthia G, Medina-Ramírez, Iliana E, Hernández-Ramírez, Aracely, Jáuregui-Rincón, Juan, Antonio LAJ and Luis RLJ. Comparison of two synthesis methods on the preparation of Fe, N-Co-doped TiO2 materials for degradation of pharmaceutical compounds under visible Light. Ceramics International 2017; 43(6):5068-5079.

  • Al-Attafi K, Nattestad A, Yamauchi Y, Dou SX, and Kim JH. Aggregated mesoporous nanoparticles for high surface area light scattering layer TiO2 photoanodes in Dye-sensitized Solar Cells. SCIENTIFIC REPORTS 2017; 7(1):10341.

  • Barbé CJ, Arendse F, Comte P, Jirousek M, Lenzmann F, Shklover V and Grätzel M. Nanocrystalline Titanium Oxide Electrodes for Photovoltaic Applications 1997; 80(12): 3157 - 3171.

  • Bezira NÇ, Evcinb A, Kayalic R, Özenc MK and Balyaci G. Comparison of Pure and Doped TiO2 Thin Films Prepared by Sol-Gel Spin-Coating Method. ACTA PHYSICA POLONICA A 2017; 132(3):620-624.

  • Baglio V, Girolamo M, Antonucci V, Aricò AS. Influence of TiO2 Film Thickness on the Electrochemical Behaviour of Dye-Sensitized Solar Cells. International Journal of electrochemical science 2011; 6: 3375 - 3384.

  • Colmenares JC, Varma RS and Lisowski P. Sustainable hybrid photocatalysts: titania immobilized on carbon materials derived from renewable and biodegradable resources. Green Chem 2016; 18 : 5736-5750

  • Chilev C, Stoycheva Y, Dicko M, Lamari F, Langlois P, Pentchev I. A new procedure for porous material characterization. International Journal of Science, Technology and Society 2017; 5(4):131 - 140.

  • Donar YO, Bilge S and Sinag A. Utilisation of lignin as a model biomass component for preparing a highly active photocatalyst under UV and visible light. Materials Science in Semiconductor Processing 2020; 118(1):105151.

  • Dhonde M, Sahu K, Murty VVS, Nemala SS, Bhargava P and Mallick S. Enhanced photovoltaic performance of a dye sensitized solar cell with Cu/N Co-doped TiO2 nanoparticles. Journal of Materials Science: Materials in Electronics 2018; 29 : 6274 - 6282.

  • Dhonde M, Sahu K, Murty VVS. Cu-doped TiO2 nanoparticles/graphene composites for efficient dye-sensitized solar cells. Solar Energy 2020; 220 : 418 - 424.

  • Etacheria V, Valentinc CD, Schneiderd J, Bahnemannd D and Pillai SC. Visible-light activation of TiO2 photocatalysts: Advances in theory and experiments. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 2015; 25:1-29.

  • Fan K, Yu J and Ho W. Improving photoanodes to obtain highly efficient dye-sensitized solar cells:a brief review. Materials Horizons 2017; 4(3):319-344.

  • Hagfeldt A, Boschloo G, Sun L, Kloo L and Pettersson H. Dye-Sensitized Solar Cells. Chem.Rev 2010; 110:6595-6663.

  • Garcia-Negron V, Phillip ND, Li J, Daniel C, Wood D, Keffer DJ, Rios O and Harper DP. Processing-Structure-Property Relationships for Lignin-based Carbonaceous Materials used in Energy Storage Applications. Energy Technology, Generation, Conversion, Storage, Distribution 2017; 5(8):1311-1321.

  • Ghann W, Kang H, Sheikh T, Yadav S, Chavez-Gil T, Nesbitt F and Uddin J. Fabrication, optimization and characterization of Natural Dye sensitized solar cell. Scientific Reports 2017; 7:41470.

  • Gindl-Altmuttera W, Köhnkea J, Unterwegerb C, Gierlingerc N, Keckesd J, Zalesakd J, and Rojase OJ. Lignin-based multiwall carbon nanotubes. Composites Part 2019; 121 : 175 - 179.

  • Gupta A , Sahuc K, Dhonde M and Murty VVS. Novel synergistic combination of Cu/S co-doped TiO2 nanoparticles incorporated as photoanode in dye sensitized solar cell. Solar energy 2020; 203 : 296 - 303.

  • Graetzel M, Janssen RAJ, Mitzi DB and Sargent EH. Materials interface engineering for solution - processed photovoltaics. Nature 2012; 488 : 304 - 312.

  • Grätzel M. Dye-sensitized solar cells. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 2003; 4:145-153.

  • Grätzel M, Janssen RAJ, Mitzi DB and Sargent EH. Materials interface engineering for solution-processed photovoltaics. NATURE 2012; 488:304-12.

  • Guo D, Zhang J, Sha L, Liu B, Zhang, Zhang X and Xue G. Preparation and characterization of lignin - TiO2 UV - shielding composite material by induced synthesis with nanofibrillated cellulose. BioResources 2020; 15(4):7374 - 7389.

  • Huang WY and Hsieh TL. Dyes Amount and Light Scattering Influence on the Photocurrent Enhancement of Titanium Dioxide Hierarchically Structured Photoanodes for Dye-Sensitized Solar Cells. Coatings 2020; 10(1),13.

  • Ito S, Nazeeruddin MK, Liska P, Comte P, Charvet R, Péchy P, Jirousek M, Kay A, Zakeeruddin SM and Grätzel M. Photovoltaic Characterization of Dye-sensitized Solar Cells: Effect of Device Masking on Conversion Efficiency. PROGRESS IN PHOTOVOLTAICS: RESEARCH AND APPLICATIONS 2006; 14(7):589-601.

  • Ibrahim MNM, Iqbal A, Shen CC, Bhawani SA and Adam F. Synthesis of lignin based composites of TiO2 for potential application as radical scavengers in sunscreen formulation. BMC Chemistry 2019; 13:17.

  • Jeng MJ, Wung YL, Chang LB and Chow L. Dye-Sensitized Solar Cells with Anatase TiO2 Nanorods Prepared by Hydrothermal Method. International Journal of Photoenergy 2013; 2013:280253.

  • Jeng MJ, Wung YL, Chang LB and Chow L. Particle Size Effects of TiO2 Layers on the Solar Efficiency of Dye-Sensitized Solar Cells. International Journal of Photoenergy 2013; 2013:563897.

  • Leonowicz A, Matuszewska A, Luterek J, Ziegenhagen D, Wojtás-Wasilewska M, Cho NS, Hofrichter M and Rogalski J. Biodegradation of lignin by white rot fungi. Fungal Genetics and biology 1999; 27(2-3):175-185.

  • Lee CH, Rhee SW and Choi HW. Preparation of TiO2 nanotube/nanoparticle composite particles and their applications in dye-sensitized solar cells. Nanoscale Research Letters 2012; 7:48.

  • Lu Y, Lu YC, Hu HQ, Xie FJ, Wei XY and Fan X. Structural Characterization of Lignin and Its Degradation Products with Spectroscopic Methods. Hindawi Journal of Spectroscopy, 2017; 2017 : 8951658.

  • Mathew S, Yella† A, Gao P, Humphry-Baker R, Curchod BFE, Ashari-Astani N, Tavernelli I, Rothlisberger U, Nazeeruddin MK and Grätzel M. Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers. NATURE CHEMISTRY 2014; 6:242-247.

  • Matthews D, Infelta P and Grätzel M. Calculation of the photocurrent-potential characteristic for regenerative, sensitized semiconductor electrodes. Solar Energy Materials and Solar Cells 1996; 44(2):119-155.

  • Mohamad AA. Absorbency and conductivity of quasi-solid-state polymer electrolytes for dye-sensitized solar cells: A characterization review. Journal of Power Sources 2016; 329:57-71.

  • Müller AV, Wierzba WM, Pastorellia MN and Polo AS. Interfacial Electron Transfer in Dye-Sensitized TiO2 Devices for Solar Energy Conversion Energy Conversion. J. Braz. Chem. Soc 2021; 32(9):1711-1738.

  • Nunes VF, Lima FM, Teixeira ES, Júnior PHFM, Almeida AFL, Freire FNA. Effects of tin on the performance of ZnO photoanode for DSSC. REVISTA MATÉRIA 2021, 26(4):articles e13112.

  • Ni M, Leung MKH, Leung DYC, Sumathy K. An analytical study of the porosity effect on dye-sensitized solar cell performance. Solar Energy Materials & Solar Cells 2006; 90(9):1331-1344.

  • O’Regan B, Grätzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 1991; 353:737-740.

  • Pan K, Zhou W, ian G, Pan Q, Tian C, Xie T, Dong Y, Wang D and Fu H. Dye - sensitized solar cells based on large-pore mesoporous TiO2 with controllable pore diameters. Berichte der deutschen chemischen Gesellschaft 2011; 30(30):4730.

  • Kakiage K, Aoyama Y, Yano T, Oya K, Fujisawab JI and Hanaya M. Highly-efficient dye-sensitized solar cells with collaborative sensitization by silyl-anchor and carboxy-anchor dyes†. J. Name 2015; 51:15894-15897.

  • Khan A, Nair V, Colmenares JC and Gläser R. Lignin-Based Composite Materials for Photocatalysis and Photovoltaics. Top Curr Chem (Z) 2018; 376(20):376:20.

  • Klapiszewski L, Siwinska-Stefanska K and Kołodyn. Preparation and characterization of novel TiO2/lignin and TiO2-SiO2/ lignin hybrids and their use as functional biosorbents for Pb(II). Chemical Engineering Journal 2017; 314:169-181.

  • Kumari JMKW, Sanjeevadharshini N, Dissanayake MAKL, Senadeera GKR and Thotawatthage CA. The effect of TiO2 photoanode film thickness on photovoltaic properties of dye-sensitized solar cells. Ceylon Journal of Science 2016; 45(1):33-41.

  • Saleem M, Irfan M, Tabassum S, Albaqami MD, Javed MS, Hussain S, Pervaiz M, Ahmad I, Ahmad A and Zuber M. Experimental and theoretical study of highly porous lignocellulose assisted metal oxide photoelectrodes for dye-sensitized solar cells. Arabian Journal of Chemistry 2021; 14(2):102937.

  • Souza APS, Oliveira FGS, Nunes VF, Lima FM, Almeida AFL, Carvalho IMMD, Manuel Graça PF. High performance SnO2 pure photoelectrode in dye-sensitized solar cells achieved via electrophoretic technique. Solar Energy 2020; 211:312-323.

  • Shahrul AM, Abdullah MH, Mamat MH, Adilah MYS, Samat AAA, Hamzah IH, Yusnita MA and Soh ZHC. Synergistic role of aluminium sulphate flocculation agent as bi-functional dye additive for Dye - Sensitized Solar Cell (DSSC). Optik - International Journal for Light and Electron optics 2022; 168945.

  • Teixeira ES, Cavalcanti RC, Nunes VF, Júnior PHFM, Lima FM, Pinho DC, Filho MDSMDS, Almeida AFL, Freire FNA. Building and Testing a Spin Coater for the Deposition of Thin Films on DSSCs. Materials Research. 2020; 23(6): e20200214

  • Wang X, Guo H, Lu Z, Liu X, Luo X, Li S, Liu S, Jian L, Wu JL and Che Z. Lignin Nanoparticles: Promising Sustainable Building Blocks of Photoluminescent and Haze Films for Improving Efficiency of Solar Cells. ACS Appl. Mater. Interfaces 2021; 13(28):33536 - 33545.


Submitted date:
02/22/2022

Accepted date:
06/08/2022

62f4f7eba953950b6b037aa2 floram Articles

FLORAM

Share this page
Page Sections