Floresta e Ambiente
https://floram.org/article/doi/10.1590/2179-8087-FLORAM-2022-0002
Floresta e Ambiente
Original Article Silviculture

Environmental and Plant Variables Influence Dalbergia nigra (Fabaceae) Phenology - Implications for Seed Production

Jailton de Jesus Silva, Everton Luís Poelking, Grênivel Mota da Costa, Ligia Silveira Funch, Edson Ferreira Duarte

Downloads: 0
Views: 174

Abstract

Studies of plant phenology in the Atlantic Forest can be enhanced by a greater understanding of the factors regulating vegetative and reproductive cycles. Dalbergia nigra (Vell.) Allemão ex Benth. is endemic and vulnerable in the Atlantic Forest. We analyzed abiotic aspects and plant traits that modulate the phenologies of D. nigra by monitoring 135 individuals in four subpopulations from different remnant forests for 24 months. The growth and shapes of the plants, as well as environmental variables, were determined. Circular analysis evidenced phenological variations among subpopulations and evaluation periods. Multiple factor analysis evidenced that phenological variations are mainly correlated with precipitation, temperature, and tree height. The combination of environmental conditions and plant characteristics affect synchronicity and phenological intensity. Low fruiting intensity (less than 50%) limits seed production and recruitment. We emphasize the importance of forest remnants and the need to increase D. nigra populations in future reforestation projects.

Keywords

Atlantic Forest; jacaranda; intrapopulation variation; reforestation

References

  • Agostinelli C, Lund U. R package ‘circular’: Circular statistics (version 0.4-93), 2017. Retrieved from https://r-forge.r-project.org/projects/circular/
    » https://r-forge.r-project.org/projects/circular/

  • Alvares CA, Stape JL, Sentelhas PC, Gonçalves JLM, Sparovek G. Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift 2013; 22(6): 711-728. https://doi.org/10.1127/0941-2948/2013/0507
    » https://doi.org/https://doi.org/10.1127/0941-2948/2013/0507

  • Araújo MMV, Lobo FDA. Phenology of Copernicia alba in flooded and not flooded environments. Floresta e Ambiente 2020; 27(1): e20170979. https://doi.org/10.1590/2179-8087.097917
    » https://doi.org/https://doi.org/10.1590/2179-8087.097917

  • Athayde EA, Morellato LPC. Anthropogenic edges, isolation and the flowering time and fruit set of Anadenanthera peregrina, a cerrado savanna tree. International Journal of Biometeorology 2014; 58(4): 443-454. https://doi.org/10.1007/s00484-013-0727-y
    » https://doi.org/https://doi.org/10.1007/s00484-013-0727-y

  • Babweteera F, Plumptre AJ, Adamescu GS, Shoo LP, Beale CM, Reynolds V et al. The ecology of tree reproduction in an African medium altitude rain forest. Biotropica 2018; 50(3): 405-417. https://doi.org/10.1111/btp.12563
    » https://doi.org/https://doi.org/10.1111/btp.12563

  • Batschelet E. Circular Statistics in Biology. New York, Academic Press, 1981.

  • Bencke CSC, Morellato LPC. Estudo comparativo da fenologia de nove espécies arbóreas em três tipos de floresta atlântica no sudeste do Brasil. Brazilian Journal of Botany 2002; 25(2): 237-248. https://doi.org/10.1590/S0100-84042002000200012
    » https://doi.org/https://doi.org/10.1590/S0100-84042002000200012

  • Boardman NT. Comparative photosynthesis of sun and shade plants. Annual Review of Plant Physiology 1977; 28(1): 355-377. https://doi.org/10.1146/annurev.pp.28.060177.002035
    » https://doi.org/https://doi.org/10.1146/annurev.pp.28.060177.002035

  • Brasil. Ministério das Minas e Energia. Secretaria Geral. Folha SC. 24/25 Aracaju/Recife. Geologia, geomorfologia, pedologia, vegetação e uso potencial da terra / Projeto RADAMBRASIL. Rio de Janeiro: IBGE; 1983.

  • Brasil. Ministério do Meio Ambiente. Planaveg: Plano Nacional de Recuperação da Vegetação Nativa. Brasília: MMA; 2017.

  • Braz M, Souza VC, Andrade LA, Bruno R, Oliveira LSB, Silva JM. Morphologic characterization of fruits, seeds and seedlings of Jacaranda Bahia (Dalbergia nigra (Vell.) Fr. All. ex. Benth) Leguminosae-Papilonoideae. Revista Brasileira de Ciências Agrárias (Agrária) 2009; 4(1): 67-71. https://dx.doi.org/10.5039/agraria.v4i1a11
    » https://doi.org/https://dx.doi.org/10.5039/agraria.v4i1a11

  • Broadbent EN, Asner GP, Keller M, Knapp DE, Oliveira PJ, Silva JN. Forest fragmentation and edge effects from deforestation and selective logging in the Brazilian Amazon. Biological Conservation 2008; 141(7): 1745-1757. https://doi.org/10.1016/j.biocon.2008.04.024
    » https://doi.org/https://doi.org/10.1016/j.biocon.2008.04.024

  • Carvalho PER. Espécies arbóreas brasileiras. Brasília: EMBRAPA Informação Tecnológica; Colombo. EMBRAPA Florestas 2003. 1039 p.

  • Chong P, Zhan J, Li Y, Jia X. Carbon dioxide and precipitation alter Reaumuria soongorica root morphology by regulating the levels of soluble sugars and phytohormones. Acta Physiologiae Plantarum 2019; 41(12): 1-12. https://doi.org/10.1007/s11738-019-2970-2
    » https://doi.org/https://doi.org/10.1007/s11738-019-2970-2

  • Costa TM, Santos MGM, Neves SPS, Miranda LAP, Funch LS. Phenological dynamics of Croton heliotropiifolius populations in a savanna/caatinga gradient, Chapada Diamantina, Brazil. Rodriguésia 2021 72: e01322020. https://doi.org/10.1590/2175-7860202172130
    » https://doi.org/https://doi.org/10.1590/2175-7860202172130

  • Duarte EF, Funch LS, Moreira RFC, Nakagawa J. Produção e colheita de sementes e espécies florestais. In: Duarte EF, organizador, Recursos e estratégias para a restauração florestal: ações para o Recôncavo da Bahia. Cruz das Almas: EDUFRB; 2016b.

  • Duarte EF, Funch LS, Souza LG, Almeida DS, Moreira RFC. Distribuição espacial de árvores matrizes em áreas remanescentes de Mata Atlântica no Recôncavo da Bahia. In: Duarte EF, organizador, Recursos e estratégias para a restauração florestal: ações para o Recôncavo da Bahia. Cruz das Almas: EDUFRB ; 2016a.

  • Duarte, E. F.; Silva, J. J. Dados fenologicos - Dalbergia nigra.xlsx. figshare. [cited 2021 dec. 13]. Dataset. Available from: Available from: https://doi.org/10.6084/m9.figshare.17190167.v1
    » https://doi.org/10.6084/m9.figshare.17190167.v1

  • Ferchichi S, Hessini K, Dell’Aversana E, D’Amelia L, Woodrow P, Ciarmiello LF et al. Hordeum vulgare and Hordeum maritimum respond to extended salinity stress displaying different temporal accumulation pattern of metabolites. Functional Plant Biology 2018; 45(11): 1096-1109. https://doi.org/10.1071/FP18046
    » https://doi.org/https://doi.org/10.1071/FP18046

  • Filardi FLR, Cardoso DBOS, Lima HC. 2020. Dalbergia in Flora do Brasil 2020. Jardim Botânico do Rio de Janeiro. [cited 2021 abr. 4] Available at: Available at: http://floradobrasil.jbrj.gov.br/reflora/floradobrasil/FB22915
    » http://floradobrasil.jbrj.gov.br/reflora/floradobrasil/FB22915

  • Fournier LA. Un metodo cuantitativo para la medición de características fenológicas en arboles. Turrialba 1974; 24(4): 422-423.

  • Freire JM, Azevedo MC, Cunha CF, Silva TF, Resende AS. Fenologia reprodutiva de espécies arbóreas em área fragmentada de Mata Atlântica em Itaborai, RJ. Pesquisa Florestal Brasileira 2013; 33(75): 243-252. https://doi.org/10.4336/2013.pfb.33.75.454
    » https://doi.org/https://doi.org/10.4336/2013.pfb.33.75.454

  • Gaudinier A, Blackman BK. Evolutionary processes from the perspective of flowering time diversity. New Phytologist 2020; 225(5): 1883-1898. https://doi.org/10.1111/nph.16205
    » https://doi.org/https://doi.org/10.1111/nph.16205

  • Godoy-Veiga M, Ceccantini G, Pitsch P, Krottenthaler S, Anhuf D, Locosselli GM. Shadows of the edge effects for tropical emergent trees: the impact of lianas on the growth of Aspidosperma polyneuron. Trees 2018; 32(4): 1073-1082. https://doi.org/10.1007/s00468-018-1696-x
    » https://doi.org/https://doi.org/10.1007/s00468-018-1696-x

  • Goulart MF, Lemos Filho JP, Lovato MB. Phenological variation within and among populations of Plathymenia reticulata in Brazilian savanna, the Atlantic Forest and transitional sites. Annals of Botany 2005; 96: 445-455. https://doi.org/10.1093/aob/mci193
    » https://doi.org/https://doi.org/10.1093/aob/mci193

  • Guariguata MR, Ostertag R. Neotropical secondary forest succession: changes in structural and functional characteristics. Forest Ecology and Management 2001; 148(1): 185-206. https://doi.org/10.1016/S0378-1127(00)00535-1
    » https://doi.org/https://doi.org/10.1016/S0378-1127(00)00535-1

  • Huenneke LF. Ecological implications of genetic variation in plant populations. Genetics and conservation of rare plants 1991; 31: 31-32.

  • Jackson JF. Seasonality of flowering and leaf-fall in a Brazilian subtropical lower montane moist forest. Biotropica 1978; 10(1): 38-42. https://doi.org/10.2307/2388103
    » https://doi.org/https://doi.org/10.2307/2388103

  • Köppen W. Climatología: con un estudio de los climas de la tierra. México, DF: Fondo de Cultura Económica; 1948.

  • Laurance WF, Camargo JL, Fearnside PM, Lovejoy TE, Williamson GB, Mesquita RC et al. An Amazonian rainforest and its fragments as a laboratory of global change. Biological Reviews 2018; 93(1): 223-247. https://doi.org/10.1111/brv.12343
    » https://doi.org/https://doi.org/10.1111/brv.12343

  • Lê S, Josse J, Husson F. FactoMineR: an R package for multivariate analysis. Journal of Statistical Software 2008; 25(1): 1-18. https://doi.org/10.18637/jss.v025.i01
    » https://doi.org/https://doi.org/10.18637/jss.v025.i01

  • Liebsch D, Maçaneiro JP, Marcon AK, Galvão F. Influência de impactos antrópicos em fragmentos de Floresta Ombrófila Mista em Santa Catarina. Pesquisa Florestal Brasileira 2016; 36(87): 277-287. https://doi.org/10.4336/2016.pfb.36.87.1213
    » https://doi.org/https://doi.org/10.4336/2016.pfb.36.87.1213

  • Mardia KV, Jupp PE. Directional Statistics. Wiley, Chichester, 2000; 156 - 157.

  • Martinelli G, Moraes MA. Livro Vermelho da Flora do Brasil. Rio de Janeiro: Andrea Jakobsson/Instituto de Pesquisas Jardim Botânico do Rio de Janeiro; 2013.

  • Martin-Gajardo S, Morellato LPC. Fenologia de Rubiaceae do sub-bosque em floresta Atlântica no sudeste do Brasil. Brazilian Journal of Botany 2003; 26(3): 299-309. https://doi.org/10.1590/S0100-84042003000300003
    » https://doi.org/https://doi.org/10.1590/S0100-84042003000300003

  • Melo FPL, Dirzo R, Tabarelli M. Biased seed rain in forest edges: evidence from the Brazilian Atlantic forest. Biological Conservation 2006; 132(1): 50-60. https://doi.org/10.1016/j.biocon.2006.03.015
    » https://doi.org/https://doi.org/10.1016/j.biocon.2006.03.015

  • Mendes MM, Gazarini LC, Rodrigues ML. Acclimation of Myrtus communis to contrasting Mediterranean light environments - effects on structure and chemical composition of foliage and plant water relations. Environmental and Experimental Botany 2001; 45(2): 165-178. https://doi.org/10.1016/S0098-8472(01)00073-9
    » https://doi.org/https://doi.org/10.1016/S0098-8472(01)00073-9

  • Mendoza I, Peres CA, Morellato LPC. Continental-scale patterns and climatic drivers of fruiting phenology: a quantitative neotropical review. Global and Planetary Change 2017; 148, 227-241. https://doi.org/10.1016/j.gloplacha.2016.12.001
    » https://doi.org/https://doi.org/10.1016/j.gloplacha.2016.12.001

  • Mendoza I, Condit RS, Wright SJ, Caubère A, Chátelet P, Hardy I, Forget P. Inter-annual variability of fruit timing and quantity at Nouragues (French Guiana): insights from hierarchical Bayesian analyses. Biotropica 2018; 50(3): 431-441. https://doi.org/10.1111/btp.12560
    » https://doi.org/https://doi.org/10.1111/btp.12560

  • Menezes IS, Couto-Santos APL, Funch LS. The influence of El Niño and edge effects on the reproductive phenology and floral visitors of Eschweilera tetrapetala Mori (Lecythidaceae), an endemic species of the Atlantic Forest of northeastern Brazil. Acta Botanica Brasilica 2018; 1(32): 1-11. https://doi.org/10.1590/0102-33062017abb0083
    » https://doi.org/https://doi.org/10.1590/0102-33062017abb0083

  • Milani JEDF, Kersten RDA, Lnoghi-Santos T, Galvão F, Amano E, Roderjan CV, Kanieski MR. Phenology and tree radial growth of Schinus terebinthifolius in a subtropical forest. Floresta e Ambiente 2021; 28(1): e20200036. https://doi.org/10.1590/2179-8087-FLORAM-2020-0036
    » https://doi.org/https://doi.org/10.1590/2179-8087-FLORAM-2020-0036

  • Moraes ACDS, Vitoria AP, Rossatto DR, Miranda LDAPD, Funch LS. Leaf phenology and morphofunctional variation in Myrcia amazonica DC. (Myrtaceae) in gallery forest and “campo rupestre” vegetation in the Chapada Diamantina, Brazil. Brazilian Journal of Botany 2017; 40(2): 439-450. https://doi.org/10.1007/s40415-016-0348-x
    » https://doi.org/https://doi.org/10.1007/s40415-016-0348-x

  • Moreira ASFP, Queiroz ACL, Barros FV, Goulart MF, Lemos-Filho JP. Do leaf traits in two Dalbergia species present differential plasticity in relation to light according to their habitat of origin? Australian Journal of Botany 2014; 61(8): 592-599. https://doi.org/10.1071/BT13248
    » https://doi.org/https://doi.org/10.1071/BT13248

  • Morellato LPC, Alberti LF, Hudson IL. Applications of circular statistics in plant phenology: a case studies approach. In: Keatley M, Hudson IL. Editors. Phenological Research: Methods for Environmental and Climate Change Analysis. Heidelberg: Springer; 2010.

  • Morellato LPC, Alberton B, Alvarado ST, Borges B, Buisson E, Camargo MGG et al. Linking plant phenology to conservation biology. Biological Conservation 2016; 195: 60-72. https://doi.org/10.1016/j.biocon.2015.12.033
    » https://doi.org/https://doi.org/10.1016/j.biocon.2015.12.033

  • Nasa. National Aeronautics and Space Administration. Goddard Institute for Space Studies. ModelE AR5 Simulations: Past Climate Change and Future Climate Predictions. [cited 2021 ago. 8]. Available at: Available at: https://data.giss.nasa.gov/modelE/ar5plots/srlocat.html
    » https://data.giss.nasa.gov/modelE/ar5plots/srlocat.html

  • Nève G, Barascud B, Descimon H, Baguette M. Gene flow rise with habitat fragmentation in the bog fritillary butterfly (Lepidoptera: Nymphalidae). BMC Evolutionary Biology 2008; 8(1): 1-10. https://doi.org/10.1186/1471-2148-8-84
    » https://doi.org/https://doi.org/10.1186/1471-2148-8-84

  • Neves SPS, Miranda LAP, Rossato DT, Funch LS. The roles of rainfall, soil properties, and species traits in phenological behavior divergence along a savanna-seasonally dry tropical forest gradient. Brazilian Journal of Botany 2017; 40(3): 665-679. https://doi.org/10.1007/s40415-017-0368-1
    » https://doi.org/https://doi.org/10.1007/s40415-017-0368-1

  • Newstrom LE, Frankie GW, Baker HG. A new classification for plant phenology based on flowering patterns in lowland tropical rain forest trees at La Selva, Costa Rica. Biotropica 1994; 26(2): 141-159. https://doi.org/10.2307/2388804
    » https://doi.org/https://doi.org/10.2307/2388804

  • Nogueira AC, Medeiros ACS. Coleta de sementes florestais nativas. Colombo: Embrapa Florestas; 2007.

  • Novaes LR, Calixto ES, Oliveira ML, Lima LA, Almeida O, Silingardi HMT. Environmental variables drive phenological events of anemochoric plants and enhance diaspore dispersal potential: a new wind-based approach. Science of the Total Environment 2020; 730: 139039. https://doi.org/10.1016/j.scitotenv.2020.139039
    » https://doi.org/https://doi.org/10.1016/j.scitotenv.2020.139039

  • O’Brien JA, Benková E. Cytokinin cross-talking during biotic and abiotic stress responses. Frontiers in Plant Science 2013; 4: 1-11. https://doi.org/10.3389/fpls.2013.00451
    » https://doi.org/https://doi.org/10.3389/fpls.2013.00451

  • Orellana JT, Nascimento JOV, Grilo J, Neves SPS, Miranda LD, Funch LS. Seasonality and the relationships between reproductive and leaf phenophases in Myrtaceae using field and herbarium data. Floresta e Ambiente 2020; 28(1): e20200035. https://doi.org/10.1590/2179-8087-FLORAM-2020-0035
    » https://doi.org/https://doi.org/10.1590/2179-8087-FLORAM-2020-0035

  • Ouédraogo M, Barry S, Zougmoré RB, Partey ST, Somé L, Baki G. Farmers’ willingness to pay for climate information services: Evidence from cowpea and sesame producers in Northern Burkina Faso. Sustainability 2018; 10(3): p. 611. https://doi.org/10.3390/su10030611
    » https://doi.org/https://doi.org/10.3390/su10030611

  • Poelking EL, Medauar PAS, Duarte EF. Mapeamento dos remanescentes florestais na região do Recôncavo da Bahia. In: Duarte EF, organizador, Recursos e estratégias para a restauração florestal: ações para o Recôncavo da Bahia. Cruz das Almas: EDUFRB ; 2016.

  • Pontara V, Bueno ML, Garcia LE, Oliveira-Filho AT, Pennington TR, Burslem DF, Lemos-Filho JP. Fine-scale variation in topography and seasonality determine radial growth of an endangered tree in Brazilian Atlantic forest. Plant and Soil 2016; 403(1): 115-128. https://doi.org/10.1007/s11104-016-2795-3
    » https://doi.org/https://doi.org/10.1007/s11104-016-2795-3

  • Poschlod P, Tackenberg O, Bonn S. Plant dispersal potential and its relation to species frequency and co-existence. In: Maarel E. editor. Vegetation Ecology. Nova Jersey: Blackwell Science Ltd; 2010.

  • QGIS Development Team. QGIS Geographic Information System. Open Source Geospatial Foundation Project, 2020. [cited 2021 nov. 6]. Available at: Available at: https://www.qgis.org/pt_BR/site/
    » https://www.qgis.org/pt_BR/site/

  • R Core Team (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. [cited 2021 mar. 13]. Available at: Available at: https://www.R-project.org/
    » https://www.R-project.org/

  • Regnier L. Influence of harvest, processing, and substrate in the germination of Dalbergia nigra seeds. Journal of Horticulture and Plant Research 2019; 5(1): 30-37. https://doi.org/10.18052/www.scipress.com/JHPR.5.30
    » https://doi.org/https://doi.org/10.18052/www.scipress.com/JHPR.5.30

  • Rêgo GM, Possamai E. Jacarandá-da-Bahia (Dalbergia nigra Vellozo) leguminoseae-papilionoidae: produção de mudas. Colombo: Embrapa Florestas ; 2003.

  • Ribeiro RA, Simoes Ramos AC, Lemos Filho JP, Lovato MB. Genetic variation in remnant populations of Dalbergia nigra (Papilionoideae), an endangered tree from the Brazilian Atlantic Forest. Annals of Botany 2005; 95(7): 1171-1177. https://doi.org/10.1093/aob/mci128
    » https://doi.org/https://doi.org/10.1093/aob/mci128

  • Sandip M, Makwana AN, Barad AV, Nawade BD. Physiology of flowering-the case of mango. International Journal of Applied Research 2015; 1(11): 1008-1012.

  • Santos MG, Miranda LDP, Funch LS. Comparing Data Collection Methods in Phenological Evaluations of Himatanthus drasticus. Floresta e Ambiente 2021; 28(1): e20200060. https://doi.org/10.1590/2179-8087-FLORAM-2020-0060
    » https://doi.org/https://doi.org/10.1590/2179-8087-FLORAM-2020-0060

  • Santos MG, Neves SP, Couto-Santos AP, Cerqueira CO, Rossatto DR, Miranda LD, Funch LS. Phenological diversity of Maprounea guianensis (Euphorbiaceae) in humid and dry neotropical forests. Australian Journal of Botany 2020; 68(4): 288-299. https://doi.org/10.1071/bt19196
    » https://doi.org/https://doi.org/10.1071/bt19196

  • Seino T. Differences in architecture and shoot growth during stagnant and extension growth phases of Acanthopanax sciadophylloides (Araliaceae). Annals of Botany 2001; 87(3): 347-354. https://doi.org/10.1006/anbo.2000.1345
    » https://doi.org/https://doi.org/10.1006/anbo.2000.1345

  • Silva A, Costa L. Germinação, morfologia de frutos, sementes e plântulas de jacarandá-da-Bahia (Dalbergia nigra (Vell.) Fr. All. ex. Benth.). Enciclopédia Biosfera 2014; 10(18): 1871-1879.

  • Silva-Júnior ALD, Cabral RLR, Sartori L, Souza LCD, Miranda FDD, Caldeira MVW et al. Evaluation of diversity and genetic structure as strategies for conservation of natural populations of Dalbergia nigra (Vell.) Allemão ex Benth. Cerne 2020; 26: 435-443. https://doi.org/10.1590/01047760202026042754
    » https://doi.org/https://doi.org/10.1590/01047760202026042754

  • Toledo MM, Paiva EAS, Lovato MB, Lemos Filho JP. Stem radial increment of forest and savanna ecotypes of a Neotropical tree: relationships with climate, phenology, and water potential. Trees 2012; 26(4): 1137-1144. https://doi.org/10.1007/s00468-012-0690-y
    » https://doi.org/https://doi.org/10.1007/s00468-012-0690-y

  • Tuteja, N. Abscisic acid and abiotic stress signaling. Plant Signaling & Behavior 2007; 2(3): 135-138. https://doi.org/10.4161/psb.2.3.4156
    » https://doi.org/https://doi.org/10.4161/psb.2.3.4156

  • Vilela GF, Carvalho DD, Vieira FDA. Fenologia de Caryocar brasiliense Camb. (Caryocaraceae) no Alto Rio Grande, sul de Minas Gerais. Cerne 2008; 317-329.

  • Wagner FH, Hérault B, Bonal D, Stahl C, Anderson LO, Baker TR et al. Climate seasonality limits leaf carbon assimilation and wood productivity in tropical forests. Biogeosciences 2016; 13(8): 2537-2562. https://doi.org/10.5194/bg-13-2537-2016
    » https://doi.org/https://doi.org/10.5194/bg-13-2537-2016

  • WRI Brasil. ONU declara a Década sobre Restauração de Ecossistemas. [cited 2021 jul. 25]. Available at: Available at: https://wribrasil.org.br/pt/blog/2019/03/onu-declara-dacada-sobre-restauracao-de-ecossistems
    » https://wribrasil.org.br/pt/blog/2019/03/onu-declara-dacada-sobre-restauracao-de-ecossistems

  • Zar JH. 2010. Biostatistical analysis. 5th. edn. Upper Saddl


Submitted date:
01/06/2022

Accepted date:
06/07/2022

62cee0e8a953954448336923 floram Articles

FLORAM

Share this page
Page Sections