Floresta e Ambiente
Floresta e Ambiente
Original Article Conservation of Nature

A Brazilian Amazon Species with High Potential to Phytoextract Potential Toxic Elements

Natalia Dias de Souza, Analder Sant’Anna Neto, Alfredo José dos Santos Junior, Ana Carolina Lindolfo de Oliveira, Danielle Affonso Sampaio, Gabriela Fontes Mayrinck Cupertino, Antônio Natal Gonçalves, Ananias Francisco Dias Júnior

Downloads: 0
Views: 29


The Euterpe oleracea Mart. has great importance in the neotropical forestry economy. Its berry is a product of great commercial value used extensively for human consumption. Most E. oleracea researches evaluate its food features, however, its potential use for phytoremediation and stipe use remains unknown. This research aimed to assess the seedling’s phytoextraction potential and the structural chemical composition in the seedlings and mature palm trees stipes. We used the Energy-dispersive X-ray fluorescence analysis to determine the concentration of the chemical elements. E. oleracea seedlings showed a great phytoextraction potential for aluminum and iron. The aluminum seedlings concentration was four times higher than preconized as a hyperaccumulator species. Calcium concentration was lower than considered normal, which may represent an antagonism effect caused by the strong presence of aluminum and iron. The fast uptake and accumulation of the seedlings highlight the potential to use this species in phytoremediation programs.


Phytoremediation; Mineral nutrition; Chemical characterization; X-ray fluorescence


  • Abreu HS, Carvalho AM, Monteiro MBO, Pereira RPW, Silva HR, Souza KCA, et al. Methods of analysis in wood chemistry. Floresta e Ambiente 2006; Technical Series: 1-20.

  • Almeida A, Ribeiro C, Carvalho F, Durao A, Bugajski P, Kurek K, Pochwatka P, Jóźwiakowski K. Phytoremediation potential of Vetiveria zizanioides and Oryza sativa to nitrate and organic substance removal in vertical flow constructed wetland systems. Ecological Engineering 2019; 138:19-27.

  • Araújo FRR, Viégas IJM, Cunha RLM, Vasconcelos WLF. Nutrient omission effect on growth and nutritional status of assai palm seedling. Pesquisa Agropecuária Tropical 2016; 46(4): 374-382.

  • Baker AJM, Brooks RR. Terrestrial higher plants which hyperaccumulate metallic elements - a review of their distribution, ecology and phytochemistry. Biorecovery 1989; 1: 81-126.

  • Bamford SA, Wegrzynek D, Chinea-Cano E, Markowicz A. Application of X-ray fluorescence techniques for the determination of hazardous and essential trace elements in environmental and biological materials. Nukleonika 2004; 49(3): 87-95.

  • Bhandari A, Surampalli RY, Champagne P, Ong SK, Tyagi RD, Lo IMC. Remediation Technologies for Soils and Groundwater. 1st ed. Reston: ASCE; 2007.

  • Barbash V, Trembus I, Alushkin S, Yashchenko O. Comparative Pulping of Sunflower Stalks. ScienceRise 2016; 3(2): 71-78.

  • Boyd RS, Jaffré T. Elemental concentrations of eleven new caledonian plant species from serpentine soils: elemental correlations and Leaf-age effects. Northeastern Natralist 2009; 16: 93-110.

  • Brasil EC, Poça RR, Sobrinho RJA. Concentration of nutrients in different parts of açaizeiro individuals (Euterpe oleracea Mart.) from an improved population. Embrapa Amazônia Oriental 2008.

  • Britez RM, Watanabe T, Jansen S, Reissmann CB, Osaki M. The relationship between aluminium and silicon accumulation in leaves of Faramea marginata (Rubiaceae). New Phytologist 2002; 156(3): 437-444.

  • Bourdy G, Dewalt SJ, Chávez de Michel LR, Roca A, Deharo E, Muñoz B, Balderrama L, Quenevo C, Gimenez A. Medicinal plants uses of the Tacana, an Amazonian Bolivian ethnic group. Journal of Ethnopharmacology 2000; 70(2): 87-109.

  • Brouwer P. Theory of XRF: Getting acquainted with the principles. 1st ed. Etten-Leur: Panalytical; 2006.

  • Brunner I, Luester J, Günthardt-Goerg MS, Frey B. Heavy metal accumulation and phytostabilisation potential of tree fine roots in a contaminated soil. Environmental Pollution 2008; 152(3): 559-568.

  • Butkus D, Baltrėnaitė E. Transport of heavy metals from soil to Pinus sylvestris L. and Betula pendula trees. Ekologija 2007; 53(1): 29-36.

  • Canuto GAB, Xavier AAO, Neves LC, Benassi MT. Physical and chemical characterization of fruit pulps from Amazonia and their correlation to free radical scavenger activity. Revista Brasileira de Fruticultura 2010; 32(4): 1196-1205.

  • Cardoso MS, Gonçalez JC. Utilizacion of coconut husk (Cocos nucifera L.) for cellulose pulp production. Ciência Florestal 2016; 26(1): 321-330.

  • Cedrim PCAS, Barros EMA, Nascimento TG. Propriedades antioxidantes do açaí (Euterpe oleracea) na síndrome metabólica. Brazilian Journal of Food Technology 2018; 21: e2017092.

  • Coutinho RMP, Fontes EAF, Vieira LM, Barros FAR, Carvalho AF, Stringheta PC. Physicochemical and microbiological characterization and antioxidant capacity of açaí pulps marketed in the states of Minas Gerais and Pará, Brazil. Ciência Rural 2017; 47(1): e20151172.

  • Dahmani-Muller H, Van Oort F, Gélie B, Balabane M. Strategies of heavy metal uptake by three plant species growing near a metal smelter. Environmental Pollution 2000; 109(2): 231-238.

  • Deharo E, Baelmans R, Gimenez A, Quenevo C, Bourdy G. In vitro immunomodulatory activity of plants used by the Tacana ethnic group in Bolivia. Phytomedicine 2004; 11(6): 516-522.

  • Emamverdian A, Ding Y, Xie Y, Sangari S. Silicon mechanisms to ameliorate heavy metal stress in plants. BioMed Research International 2018; 10: 1-10.

  • Ezeonu CS, Ejikeme CM, Ezeonu NC, Eboatu A. Biomass Constituents and Physicochemical Properties of Some Tropical Softwoods. AASCIT Journal of Materials 2017; 3(2): 5-13.

  • França EJ, Fernandes EAN, Bacchi MA, Saiki M. Native trees as biomonitors of chemical elements in the biodiversity conservation of the Atlantic forest. Journal of Atmospheric Chemistry 2004; 49: 579-592.

  • França EJ, Fernandes EAN, Bacchi MA, Rodrigues RR, Verburg TG. Inorganic chemical composition of native trees of the Atlantic forest. Environmental Monitoring and Assessment 2005; 102: 349-357.

  • Garzon GA, Cuenca CEN, Vincken JP, Gruppen H. Polyphenolic composition and antioxidant activity of açaí (Euterpe oleacea Mart.) from Colombia. Food Chemistry 2017; 217(15): 364-372.

  • Gonçalves Junior AC, Coelho GF, Schwantes D, Rech AL, Campagnolo MA, Miola AJ. Biosorption of Cu (II) and Zn (II) with açaí endocarp Euterpe oleracea M. in contaminated aqueous solution. Acta Scientiarum Technology 2016; 38(3): 361-370.

  • Haghnazar H, Hudson-Edwards KA, Kumar V, Pourakbar M, Mahdavianpour M, Aghayani E. Potentially toxic elements contamination in surface sediment and indigenous aquatic macrophytes of the Bahmanshir River, Iran: Appraisal of phytoremediation capability. Chemosphere 2021; 285: 131446.

  • Jansen S, Broadley M, Robbrecht E, Smets E. Aluminium hyperaccumulator in angiosperms: a review of its phylogenetic significance. The Botanical Review 2002; 68: 235-269.

  • Kabata-Pendias A, Pendias H. Trace elements in soils and plants. 4th ed. Boca Raton: CRC Press; 2010.

  • Klock U, Andrade AS. Química da Madeira. 4th ed. Curitiba: UFPR; 2013.

  • Leitman P, Soares K, Henderson A, Noblick L, Martins RC. Arecaceae in Lista de Espécies da Flora do Brasil. Jardim Botânico do Rio de Janeiro. 2015.

  • Magalhães TSSA, Macedo PCO, Converti A, Lima AAN. The Use of Euterpe oleracea Mart. As a New Perspective for Disease Treatment and Prevention. Biomolecules 2020; 10(6): 813.

  • Matos GSB, Fernandes AR, Wadt PGS (2016) Critical levels and nutrient sufficiency ranges derived from methods for assessing the nutritional status of oil palm. Pesquisa Agropecuária Brasileira 2016; 51: 1557-1567.

  • Nakbanpote W, Paitlertumpai N, Sukadeetad K, Meesungeon O, Noisa-Nguan W. Advances in phytoremediation research: a case study of Gynura pseudochina (L.) DC. In: Fuerstner I, editor. Advanced Knowledge Application in Practice. London: IntechOpen; 2010.

  • Odendaal AY, Schauss AG. Potent antioxidant and anti-inflammatory flavonoids in the nutrient-rich Amazonian palm fruit, açaí (Euterpe spp.) oxidation and antioxidant activity of polyphenols. In: Watson RR, Reedy VR, Zibadi S, editors. Polyphenols in Human Health and Disease. Cambridge: Academic Press; 2014.

  • Omote J, Kohno H, Toda K. X-Ray fluorescence analysis utilizing the fundamental parameter method for the determination of the elemental composition in plant samples. Analytica Chimica Acta; 1995. 307: 117-126.

  • Pacheco-Palencia LA, Duncan CE, Talcott ST. Phytochemical composition and thermal stability of two commercial açaí species, Euterpe oleracea and Euterpe precatoria Food Chemistry; 2009. 115: 1199-1205.

  • Pajević S, Borišev M, Nikolić N, Arsenov DD, Orlović S, Župunski M. Phytoextraction of Heavy Metals by Fast-Growing Trees: A Review. In: Ansari A, Gill S, Gill R, Lanza G, Newman L, editors. Phytoremediation. London: Springer; 2016.

  • Pulford ID, Watson C. Phytoremediation of heavy metal-contaminated land by trees - a review. Environment International 2003; 29: 529-540.

  • Ramage MH, Burridge H, Busse-Wicher M, Fereday J, Reynolds T, Shah DU, et al. The wood from the trees: The use of timber in construction. Renewable & Sustainable Energy Reviews 2017; 68: 333-359.

  • Santos BLG, Gama JRV, Ribeiro RBS, Anjos RKF, Gomes KMA, Ximenes LC, et al. Estrutura e valoração de Euterpe oleracea em uma floresta de várzea na Amazônia. Advances in Forest Science 2018; 5(3): 391-396.

  • Sarwar N, Imran M, Shaheen MR, Ishaque W, Kamran MA, Matloob A, et al. Phytoremediation strategies for soils contaminated with heavy metals: modifications and future perspectives. Chemosphere 2017; 171: 710-721.

  • Sharma P, Dubey RS. Lead toxicity in plants. Brazilian Journal of Plant Physiology 2005; 17(1): 35-52.

  • Silva GR, Amaral IG, Galvão JG, Pinheiro DP, Silva Júnior ML, Melo NC. Use of sludge tanning in production plants açaizeiro in initial phase of development. Revista Brasileira de Ciências Agrárias 2015; 10(4): 506-511.

  • Silva JC, Matos JLM, Oliveira JTS, Evangelista WV. Influence of age and position along the trunk on the chemical composition of Eucalyptus grandis Hill ex. Maiden wood. Árvore 2005; 29(3): 455-460.

  • Singh S, Kaur I, Kariyat R. The Multifunctional Roles of Polyphenols in Plant-Herbivore Interactions. International Journal of Molecular Sciences 2021; 22(3): 1442.

  • Smith RE, Eakera J, Tran K, Goerger M, Wycoff W, Sabaa-Srur AUO, et al. Insoluble solids in Brazilian and Floridian açaí (Euterpe oleracea Mart.). Journal of Natural Products 2012; 2(2): 95-98.

  • Suman J, Uhlik O, Viktorova J, Macek T. Phytoextraction of Heavy Metals: A Promising Tool for Clean-Up of Polluted Environment? Frontiers in Plant Science 2018; 9: 1476.

  • Verma F, Singh S, Dhaliwal SS, Kumar V, Kumar R, Singh J, et al. Appraisal of pollution of potentially toxic elements in different soils collected around the industrial area. Heliyon 2021; 7(10): e08122.

  • Ye F, Ma MH, Wu SJ, Jiang Y, Zhu GB, Zhang H, et al. Soil properties and distribution in the riparian zone: the effects of fluctuations in water and anthropogenic disturbances. European Journal of Soil Science 2019; 70(3): 664-673.

  • Wani RA, Ganai BA, Shah MA, Uqab B. Heavy Metal Uptake Potential of Aquatic Plants through Phytoremediation Technique - A Review. Journal of Bioremediation & Biodegradation 2017; 8(4): 100404.

  • Wycoff W, Luo R, Schauss AG, Kababick JN, Sabaa-Srur AUO, Maia JGS, et al. Chemical and nutritional analysis of seeds from purple and white açaí (Euterpe oleracea Mart.). Journal of Food Composition and Analysis 2015; 41: 181-187.

  • Zaynab M, Fatima M, Abbas S, Sharif Y, Umair M, Zafar H, et al. Role of secondary metabolites in plant defense against pathogens. Microbial Pathogenesis 2018; 124: 198-202.

  • Zhao K, Yang Y, Zhang L, Zhang J, Zhou Y, Huang H, et al. Silicon-based additive on heavy metal remediation in soils: Toxicological effects, remediation techniques, and perspectives. Environmental Research 2022; 205: 112244.

Submitted date:

Accepted date:

62740054a95395653458d964 floram Articles


Share this page
Page Sections