Floresta e Ambiente
https://floram.org/article/doi/10.1590/2179-8087-FLORAM-2021-0068
Floresta e Ambiente
Original Article Silviculture

Carbon and Nitrogen Stocks and Microbiological Activity Under Forest-Pasture System and Traditional Pasture in Pernambuco

Gabriel Carlos Moura Pessôa, Victor Casimiro Piscoya, Fernando Cartaxo Rolim Neto, Renisson Neponuceno de Araújo Filho, Robson Carlos Pereira de Melo, Uriel Calisto Moura Pessôa, Lucas José de Souza Silva, Moacyr Cunha Filho, Rafael Costa Schaidhauer de Almeida, Thaisa Oliveira Folha Piscoya, Alex Souza Moraes, Raimundo Rodrigues Gomes Filho, Raimundo Mainar de Medeiros, Luciano Marcelo Fallé Saboya, Alceu Pedrotti, Francisco Sandro Rodrigues Holanda, Milton Marques Fernandes, Luiz Diego Vidal Santos

Downloads: 0
Views: 55

Abstract

An adequate amount of soil organic matter is considered essential for long-term sustainable agriculture, ensuring good productivity. Therefore, the present study quantified carbon and nitrogen stocks and microbiological activity in soil of three different areas: Forest-pasture System, Pasture System and preserved Caatinga - used as a reference of the experiment - located in a semi-arid region, in Watershed of Pajeú River, state of Pernambuco, Brazil. Eight trenches were opened in each system to collect soil samples at depths of 0 - 10, 20 - 30 and 50 - 60 cm, for chemical and microbiological analysis. In general, attributes of soil showed better results of land use in the following order: preserved Caatinga - Forest-pasture System - Pasture System.

Keywords

Fractionation of humic substances; Carbon stocks; Agroforestry Systems; Caatinga

References

  • Almeida BG, Viana JHM, Teixeira WG, Donagemma GK. Densidade do solo. In: Teixeira PC, Donagemma GK, Fontana A, Teixeira WG, editores técnicos. Manual de métodos de análise de solo. 3ª ed. rev. e ampl. Brasília: Embrapa; 2017.

  • Althoff TD, Menezes RSC, Pinto AS, Pareyn FGC, Carvalho AL, Martins JCR et al. Adaptations of the century model to simulate C and N dynamics of Caatinga dry forest before and after deforestation. Agriculture, Ecosystems & Enviroment 2018; 254: 26-34.

  • Anderson TH, Domsch KH. Determination of ecophysiological maintenance carbon requirements of soil microorganisms in a dormant state. Biology and Fertility of soils 1985; 1 (2): 81-89.

  • Assis PCR, Stone LF, Oliveira JM, Wruck FJ, Madari BE, Heinemann AB. Atributos físicos, químicos e biológicos do solo em sistemas de integração lavoura-pecuária-floresta. Revista Agrarian 2019; 12 (43): 57-70.

  • Balesdent J, Basile-Doelsch I, Chadoeuf J, Cornu S, Derrien D, Fekiacova, Z et al. Atmosphere-soil carbon transfer as a function of soil depth. Nature 2018; 559 (7715): 599-602.

  • Bartlett RJ, Ross DS. Colorimetric determination of oxidizable carbon in acid soil solutions. Soil Science Society of America Journal 1988, 52 (4): 1191-1192.

  • Blair GJ, Lefroy RDB, Lisle L. Soil carbon fractions based on their degree of oxidation, and the development of a carbon management index for agricultural systems. Australian Journal of Agricultural Research 1995; 46: 1459-1466.

  • Bongiorno G, Bunemann EK, Oguejiofor CU, Meier J, Gort G, Comans R et al. Sensitivity of labile carbon fractions to tillage and organic matter management and their potential as comprehensive soil quality indicators across pedoclimatic conditions in Europe. Ecological Indicators 2019; 99 (1): 38-50.

  • Bünemann EK, Bongiorno G, Bai Z, Creamer RE, Deyn GD, de Goede RGM et al. Soil quality-A critical review. Soil Biology and Biochemistry 2018; 120: 105-125.

  • Cardoso EL, Silva MLN, Silva CA, Curi N, Freitas DAF. Estoques de carbono e nitrogênio em solo sob florestas nativas e pastagens no bioma Pantanal. Pesquisa Agropecuária Brasileira 2010; 45 (9): 1028-1035.

  • Cherubin MR, Eitelwein MT, Fabbris C, Weirich SW, Silva RF, Silva VR et al. Physical, chemical, and biological quality in an Oxisol under different tillage and fertilizer sources. Revista Brasileira de Ciência do Solo 2015, 39 (2): 615-625.

  • Deb S, Bhadoria PBS, Mandal B, Rakshit A, Singh HB. Soil organic carbon: Towards better soil health, productivity and climate change mitigation. Climate Change and Environmental Sustainability 2015, 3 (1): 26-34.

  • Donagemma GK, Viana JHM, Almeida BG, Ruiz HA, Klein VA, Dechen SCF. Análise Granulométrica. In: Teixeira PC, Donagemma GK, Fontana A, Teixeira WG, editores técnicos. Manual de métodos de análise de solo . 3ª ed. rev. e ampl. Brasília: Embrapa ; 2017.

  • Doupoux C, Merdy P, Montes CR, Nunan N, Melfi A, Pereira OJR et al. Modelling the genesis of equatorial podzols: age and implications for carbon fluxes. Biogeosciences 2017; 14: 2429-2440.

  • Fontana A, Biachi SR. Carbono e nitrogênio total: Analisador elementar. In: Teixeira PC, Donagemma GK, Fontana A, Teixeira WG, editores técnicos. Manual de métodos de análise de solo . 3ª ed. rev. e ampl. Brasília: Embrapa ; 2017.

  • Fraga VS, SALCEDO IH. Declines of organic nutrient pools in tropical semiarid soils under subsistence farming. Soil Science Society of America Journal 2004, 68 (1): 215-224.

  • Fu X, Shao M, Wei X, Horton R. Soil organic carbon and total nitrogen as affected by vegetation types in Northern Loess Plateau of China. Geoderma 2010; 155 (1-2): 31-35.

  • Isermeyer, H. Eine einfache Methode zur Bestimmung der Bodenatmung und der Karbonate im Boden. Z. Pflanzenernäh Bodenk 1952; 56 (1-3): 26-38.

  • Lal R. Beyond Copenhagen: mitigating climate change and achieving food security through soil carbon sequestration. Food Security 2010; 2 (2): 169-177.

  • Lal R. Soil carbon sequestration to mitigate climate change. Geoderma 2004; 123 (1-2): 1-22.

  • Legaz BV, Souza DM, Teixeira RFM, Antón A, Putman B, Sala S. Soil quality, properties, and functions in life cycle assessment: an evaluation of models. Journal of Cleaner Production 2017; 140: 502-515.

  • Li C, Fultz LM, Moore-Kucera J, Acosta-Martínez V, Horita J, Strauss R et al. Soil carbon sequestration potential in semiarid grasslands in the Conservation Reserve Program. Geoderma 2017; 294: 80-90.

  • Li Q, Yang D, Jia Z, Zhang L, Zhang Y, Feng L et al. Changes in soil organic carbono and total nitrogen stocks along a chronosequence of Caragana intermedia plantations in alpine Sandy land. Ecological Engineering 2019; 133: 53-59.

  • Loss A, Moraes AGL, Pereira MG, Silva EMR, Anjos LHC. Carbono, matéria orgânica leve e frações oxidáveis do carbono orgânico sob diferentes sistemas de produção orgânica. Comunicata Scientiae 2010; 1 (1): 57-64.

  • Magri RAF, Baião TC. Restoration of degraded APPs and the viability of carbon sequestration: study of an urban watershed in the city of Passos-MG. Ambiência 2016; 12 (3): 921-930.

  • Mascarenhas ARP, Sccoti MSV, Melo RR, Corrêa FLO, Souza EFM, Andrade RA et al. Atributos físicos e estoques de carbono do solo sob diferentes usos da terra em Rondônia, Amazônia Sul-Ocidental. Pesquisa Florestal Brasileira 2017; 37 (89): 19-27.

  • Melo GB, Pereira MG, Perin A, Guareschi RF, Soares PFC. Estoques e frações da matéria orgânica do solo sob os sistemas plantio direto e convencional de repolho. Pesquisa Agropecuária Brasileira 2016, 51 (9): 1511-1519.

  • Menezes RSC, Sales AT, Primo DC, Albuquerque ERGM, Jesus KN, Pareyn FGC et al. Soil and vegetation carbon stocks after land-use changes in a seasonally dry tropical forest. Geoderma 2021; 390 (1): 114943.

  • Nair PR, Nair VD, Kumar BM, Showalter JM. Carbon sequestration in agroforestry systems. In: Sparks DL. (Ed.) Advances in Agronomy, 1st Ed. 108: 237-307; London: Academic Press; 2010.

  • Nasrollahi N, Hunt J, Tang C, Cann D. Modelled quantification of different sources of nitrogen inefficiency in semi-arid cropping systems. Agronomy 2021; 11(6): 1222.

  • Oliveira Filho JDS, Pereira MG, Aquino BFD. Organic matter labile fractions and carbon stocks in a typic quartzipsamment cultivated with sugarcane harvested without burning. Revista Caatinga 2017, 30 (1): 24-31.

  • Oliveira SRGP, Mota JCA, Toma RS. Semi-detailed survey of soils of Ceará’s semiarid region: Lavoura Seca experimental farm. Revista Ciências Agronomicas 2020; 51 (2): 1-8.

  • Pata, U. K. Linking renewable energy, globalization, agriculture, CO2 emissions and ecological footprint in BRIC countries: A sustainability perspective. Renewable Energy 2021; 173 (1), 197-208.

  • Paustian K, Campbell N, Dorich C, Marx E, Swan A. Assessment of potential greenhouse gas mitigation from changes to crop root mass and architecture. Booz Allen Hamilton Inc., McLean, VA; United States; 2016.

  • Pedrotti A, Ferreira EPB, Assunção SJR, Araújo Filho RNA, Gomes Filho RR, Oliveira OS et al. Biological Activity as an Indicator of Soil Quality under Different Cultivation Systems in Northeastern Brazil. Journal of Experimental Agriculture International 2018; 22 (3): 1-13.

  • Pegoraro RF, Moreira CG, Dias DG, Silveira TC. Carbon and nitrogen stocks in the soil and humic substances of agricultural crops in the semi-arid region. Revista Ciência Agronômica 2018; 49 (4): 574-583.

  • Pulrolnik K, Barros NF, Silva IR, Novais RF, Brandani CB. Estoques de carbono e nitrogênio em frações lábeis e estáveis da matéria orgânica de solos sob eucalipto, pastagem e cerrado no Vale do Jequitinhonha-MG. Revista Brasileira de Ciência do Solo 2009; 33 (5): 1125-1136.

  • Roose E, Barthes B. Organic matter management for soil conservation and productivity restoration in Africa: a contribution from Francophone research. In: Martius C, Tiessen H, Vlek PLG (Eds). Managing Organic Matter in Tropical Soils: Scope and Limitations. Developments in Plant and Soil Sciences, Dordrecht: Springer; 2001.

  • Sampaio EVSB, Costa TL. Estoques e fluxos de carbono no semi-árido nordestino: estimativas preliminares. Revista Brasileira de Geografia Física 2011; 4 (6): 1275-1291.

  • Sant-Anna SAC, Jantalia CP, Sá JM, Vilela L, Marchão RL, Alves BJ et al. Changes in soil organic carbon during 22 years of pastures, cropping or integrated crop/livestock systems in the Brazilian Cerrado. Nutrient Cycling in Agroecosystems 2016; 108 (1): 101-120.

  • Santos HG, Jacomine PKT, Anjos LHC, Oliveira VA, Lumbreras JF, Coelho MR et al. Sistema brasileiro de classificação de solos. 5ª ed. Brasília: Embrapa ; 2018.

  • Santos KF, Barbosa FT, Bertol I, Werner RS, Wolschick NH, Mota JM. Teores e estoques de carbono orgânico do solo em diferentes usos da terra no Planalto Sul de Santa Catarina. Revista de Ciências Agroveterinárias 2019; 18 (2): 222-229.

  • Schimmel H, Braun M, Subke JA, Amelung W, Bol R. Carbon stability in a Scottish lowland raised bog: potential legacy effects of historical land use and implications for global change. Soil Biology and Biochemistry 2021; 154 (1): 108124.

  • Silva EFD, Lourente EPR, Marchetti ME, Mercante FM, Ferreira AKT, Fujii GC. Frações lábeis e recalcitrantes da matéria orgânica em solos sob integração lavoura-pecuária. Pesquisa Agropecuária Brasileira 2011; 46 (10): 1321-1331.

  • Silva JRM, Ensinas SC, Barbosa GF, Rezende JVO, Barreta PGV, Zuffo AM. Total organic carbon and the humic fractions of the soil organic matter in silvopastoral system. Revista Brasileira de Ciências Agrárias 2020; 15 (2): 1-6.

  • Solomon D, Lehmann J, Zech W. Land use effects on soil organic matter properties of chromic luvisols in semi-arid northern Tanzania: carbon, nitrogen, lignin and carbohydrates. Agriculture, Ecosystems & Environment 2000; 78 (3): 203-213.

  • Swanepoel CM, van der Laan M, Weepener HL, du Preez CC, Annandale JG. Review and meta-analysis of organic matter in cultivated soils in southern Africa. Nutrient Cycling in Agroecosystems 2016; 104 (2): 107-123.

  • Swift RS. Organic matter characterization. In: Sparks DL, Page AL, Helmke PA, Loeppert RH, Soltanpour PN, Tabatabai MA et al. Methods of soil analysis: Part 3 Chemical Methods. Soil Science Society of America: Madison; 1996.

  • Tadini AM, Nicolodelli G, Marangoni BS, Mounier S, Montes CR, Milori DMBP. Evaluation of the roles of metals and humic fractions in the podzolization of soils from the Amazon region using two analytical spectroscopy techniques. Microchemical Journal 2019; 144: 454-460.

  • Toensmeier E. The carbon farming solution: a global toolkit of perennial crops and regenerative agriculture practices for climate change mitigation and food security. White River Junction: Chelsea Green Publishing; 2016.

  • Wang B, Liang C, Yao H, Yang E, An S. The accumulation of microbial necromass carbon from litter to mineral soil and its contribution to soil organic carbon sequestration. Catena 2021; 207 (1): 105622

  • Xu L, Wang C, Zhu J, Gao Y, Li M, LV Y et al. Latitudinal patterns and influencing factors of soil humic carbon fractions from tropical to temperate forests. Journal of Geographical Sciences 2018; 28 (1): 15-30.

  • Zhang Y, Xu X, Li Z, Liu M, Xu C, Zhang R et al. Effects of vegetation restoration on soil quality in degraded karst landscapes of southwest China. Science of the Total Environment 2019; 650 (2): 2657-2665.

  • Zomer RJ, Bossio DA, Sommer R, Verchot LV. Global sequestration potential of increased organic carbon in cropland soils. Scientific Reports 2017; 7 (1): 1-8.


Submitted date:
08/24/2021

Accepted date:
04/27/2022

628f89dda95395550f6d1562 floram Articles

FLORAM

Share this page
Page Sections