Floresta e Ambiente
https://floram.org/article/doi/10.1590/2179-8087-FLORAM-2021-0047
Floresta e Ambiente
Original Article Silviculture

Biochemical and Physiological Modifications in Seedlings of Schinus terebinthifolius Raddi. After Hardening with Salicylic Acid

Maria Eunice Lima Rocha, Ubirajara Contro Malavasi, Cândido Ferreira de Oliveira Neto, Jessica Suellen Silva Teixeira, Diana Jhulia Palheta de Sousa, Marlene de Matos Malavasi

Downloads: 0
Views: 60

Abstract

Exogenous application of stress inductors can facilitate and accelerate some biological responses that promote plant defense. The objective of the experiment was to quantify some compounds linked to nitrogen metabolism as a function of the application of salicylic acid in Schinus terebinthifolius seedlings submitted to water deficit. The experiment was constituted of four doses of salicylic acid and three periods of water deficit. Quantifications included levels of nitrate, free ammonium, total soluble amino acids, proteins, proline, glycine-betaine and relative water content. When evaluating the relative water content in seedlings of Schinus terebinthifolius at 8 days, it was observed that the dose of 200 mg L-1. Seedlings showed physiological responses when subjected to doses of salicylic acid of 200 and 300 mg L-1. The increase in concentration of proline and glycine are advantageous, because these substances act as osmoregulators and cell protectors against deficit hydrical.

Keywords

Forest species; Free ammonium; Nitrate; Water deficit

References

  • Almeida AQ, Vieira EL. Gibberellin action on growth, development and production of tobacco. Scientia Agraria Paranaensis, 2010; 9(1): 45-57.

  • Alvares CA.; Stape JL, Sentelhas PC, Gonçalves JLdeM, Sparovek GK. Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift, 2013; 22(6): 711-728.

  • Anjum AS, Xie XY, Wang LC, Saleem MF, Man, C, Lei W. Morphological, physiological and biochemical responses of plants to drought stress. African Journal of Agricultural Research, 2011; 6(9): 2026-2032.

  • Asgher M, Khan MIR, Anjum NA, Khan NA. Minimizing toxicity of cadmium in plants-role of plant growth regulators. Protoplasma, 2015; 252 (2): 399-413.

  • Ashraf M, Foolad MR. Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany, 2007; 59(2): 206-216.

  • Ashraf M, Akram NA, Arteca RN, Foolad MR. The physiological, biochemical and molecular roles of brassinosteroids and salicylic acid in plant processes and salt tolerance. Critical Reviews in Plant Sciences, 2011; 29(3):162-190.

  • Bates, LS, Waldren, RP, Teare ID. Rapid determination of free proline for water-stress studies. Short communication. Plant and Soil, 1973; 39(1): 205-207.

  • Bergamaschi, H, Bergonci, JI. Relações água-Planta. In: Bergonci, JI. As plantas e o clima: Princípios e aplicações. Guaíba: Agrolivros; 2017.

  • Bharwana SA, Ali S, Farooq MA, Ali B, Iqbal N, Abbas F et al. Hydrogen sulfide ameliorates lead-induced morphological, photosynthetic, oxidative damages and biochemical changes in cotton. Environmental Science and Pollution Research, 2014; 21(1):717-731.

  • Bulla MK, Hernandes L, Baesso ML, Nogueira AC, Bento AC, Bortoluzzi BB, Serra LZ, Cortez DA. Evaluation of Photoprotective Potential and Percutaneous Penetration by Photoacoustic Spectroscopy of the Schinus terebinthifolius Raddi Extract. Photochemistry and Photobiology, 2015; 91(3): 558-566.

  • Campos MF, Backes C, Roters JMC, Ono EO, Rodrigues JD. Influência de retardantes de crescimento no desenvolvimento de plantas de gladíolo (Gladiolus communis L. spp., Iridaceae). Biotemas, 2010; 23(3): 31-36.

  • Carlin SD, Santos, DMMDos. Indicadores fisiológicos da interação entre déficit hídrico e acidez do solo em cana-de-açúcar. Pesquisa agropecuária brasileira, 2009; 44 (9): 1106-1113.

  • Carvalho MG, Melo AGN, Aragão CFS.; Raffin FN, Moura TFAL. Schinus terebinthifolius Raddi: composição química, propriedades biológicas e toxicidade. Revista brasileira de plantas medicinais, 2013; 15(1):158-169.

  • Close DCA. review of ecophysiologically-based seedling specifications for temperate Australian eucalypt plantations. New Forests, 2012; 43(6): 739-753.

  • Correia KG, Nogueira RJMC. Avaliação do crescimento do amendoim (Arachis hypogaea L.) submetido a déficit hídrico. Revista de Biologia e Ciências da Terra, 2004; 4(2): 1-7.

  • Costa EMMB, Barbosa AS, Arruda TAde, Oliveira PTde, Dametto FR, Carvalho RAde, Melo MdasD. Estudo in vitro da ação antimicrobiana de extratos de plantas contra Enterococcus faecalis Jornal Brasileiro de Patologia e Medicina Laboratorial, 2010; 46 (3):175-180.

  • Cruz CD. Programa GENES - Aplicativo Computacional em Estatística Aplicada à Genética (GENES - Software for Experimental Statistics in Genetics). Genetics and Molecular Biology, 1998; 21(1): 1-5.

  • Cunha RLM, Filho BGS, Costa RCL, Viégas IJM. Physiological assessment in young Brazilian and African mahogany plants during the dry and rainy seasons in northeastern Para state, Brazil. Revista Ciências Agrárias, 2013; 56(3): 255-260.

  • Cvikrová M, Gemperlová L, Martincová O, Vanková R. Effect of drought and combined drought and heat stress on polyamine metabolism in proline over producing tobacco plants. Plant Physiology and Biochemistry, 2013; 73(1): 7-15.

  • D’Avila FS, Paiva HN, Leite HG, Barros NF, Leite FP. Efeito do potássio na fase de rustificação de mudas clonais de eucalipto. Revista Árvore, 2011; 35(1): 13-19.

  • Degáspari CH, Waszczynskyj N, Prado MRM. Antimicrobial activity of Schinus terebenthifolius Raddi. Ciência e Agrotecnologia, 2005; 29(3): 617-22.

  • Driever SM, Krormdijk J. Will. C3 crops enhanced with the C4 CO2- concentrating mechanism live up to their full potential (yield). Journal of Experimental Botany, 2013; 64(13): 3925-3935.

  • Ferrari E, Paz A, Silva AC. Déficit hídrico no metabolismo da soja em semeaduras antecipadas no mato grosso. Pesquisas Agrárias e Ambientais, 2015; 3(1): 67-77.

  • Ferreira WN, Lacerda CF, Costa RCda, Medeiros Filho S. Effect of water stress on seedling growth in two species with different abundances: the importance of Stress Resistance Syndrome in seasonally dry tropical forest. Acta Botanica Brasilica, 2015; 29(3): 375-382.

  • Filippou P, Bouchagier P, Skotti E, Fotopoulos V. Proline and reactive oxygen/nitrogen species metabolism is involved in the tolerant response of the invasive plant species Ailanthus altissima to drought and salinity. Environmental and Experimental Botany , 2014; 97(1): 1-10.

  • Freires IA, Alves LA, Jovito VdeC, Castro RDde. Atividade antifúngica de Schinus terebinthifolius (Aroeira) sobre cepas do gênero Candida Revista Odontológica do Brasil-Central, 2011; 20(52): 41-45.

  • Gilbert B, Favoreto R. Schinus terebinthifolius Raddi. Revista Fitossanitária, 2011; 6(1): 43-56.

  • Grieve CM, Grattan SR. Rapid assay for determination of water soluble quaternary ammonium compounds. Plant and Soil , 1983;70(1): 303-307.

  • Hayat Q, Hayat S, Irfan M, Ahmad A. Effect of exogenous salicylic acid under changing environment: a review. Environmental and Experimental Botany , 2010; 68(1): 14-25.

  • Hasanuzzaman M, Alam MM, Nahar K, Mahmud JA, Ahamed U, Fujita M. Exogenous salicylic acid alleviates salt stress-induced oxidative damage in Brassica napus by enhancing the antioxidant defence and glyoxalase systems. Australian Journal of Crop Science, 2014; 8(4): 631-639.

  • Iqbal N, Umar S, Khan NA, Khan MR. A new perspective of phytohormones in salinity tolerance: Regulation of proline metabolism. Environmental and Experimental Botany , 2014; 100 (1): 34-42.

  • Jacobs DF, Landis TD. Hardening. In: Dumroese RK, Luna T, Landis TD. (Eds.). Nursery manual for native plants: Guide for tribal nurseries. Washington: United States Department of Agriculture, Forest Service, 2009.

  • Joseph B, Jini D, Sujatha S. Insight into the role of exogenous salicylic acid on plants grown under salt environment. Asian Journal of Crop Science, 2020, 2(4); 226-235.

  • Kabiri R., Farahdakhsh H, Nasibi F. Effect of drought stress and its interaction with salicylic acid on black cumin (Nigella sativa) germination and seedling growth. World Applied Sciences Journal, 2012; 18(4); 520-527.

  • Kavi Kishor PB, Sangam S, Amrutha RN, Sri Laxmi P, Naidu KR, Rao KRSS et al. Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: Its implications in plant growth and abiotic stress tolerance. Current Science, 2005; 88 (3): 424-438.

  • Khaled FEM, Ahmed HEG, Hamdy AS, Shibamoto T. Chemical Compositions and Antioxidant/Antimicrobial Activities of Various Samples Prepared from Schinus terebinthifolius Leaves Cultivated in Egypt. Journal of Agricultural and Food Chemistry, 2009; 57(12): 5265-5270.

  • Khan MIR, Iqbal N, Masood A, Khan NA. Variation in salt tolerance of wheat cultivars: role of glycinebetaine and ethylene. Pedosphere, 2012; 22(6): 746-754.

  • Khan MIR.; Asgher M, Khan NA. Alleviation of salt-induced photosynthesis and growth inhibition by salicylic acid involves glycinebetaine and ethylene in mungbean (Vigna radiata L.). Plant Signaling & Behavior, 2014; 80(1): 67-74.

  • Lobato AKS, Oliveira Neto CF, Costa RCL, Santos Filho BG, Cruz FJR, Laughinghouse HD. Biochemical and physiological behavior of Vigna unguiculata (L.) walp. under water stress during the vegetative phase. Asian Journal of Plant Sciences, 2008; 7(1); 44-49.

  • Lobo RC, Oliveira Júnior Fde. Efeitos do estresse hídrico nas características morfológicas de plântulas de Eucalyptus grandis W. (Hill ex. Maiden). Revista da União Latino-americana de Tecnologia, 2015; 3(1): 09-25.

  • Maseda, PH, Fernández, RJ. Growth potential limits drought morphological plasticity in seedlings from six Eucalyptus provenances. Tree Physiology, 2016; 36(1): 243-251.

  • Mazzuchelli EHL, Souza GM, Pacheco AC. Rustificação de mudas de eucalipto via aplicação de ácido salicílico. Pesquisa Agropecuária Tropical, 2014; 44(4); 443-450.

  • Misra N, Misra R. Salicylic acid changes plant growth parameters and proline metabolism in Rauwolfia serpentina leaves grown under salinity stress. American-Eurasian Journal Of Agricultural & Environmental Sciences, 2012; 12(2): 1601-1609.

  • Miura K, Tada Y. Regulation of water, salinity, and cold stress responses by salicylic acid. Frontiers Plant Science, 2014; 5(4): 1-19.

  • Monteiro JG, Cruz FJR, Nardin MB, Santos DMMdos. Crescimento e conteúdo de prolina em plântulas de guandu submetidas a estresse osmótico e à putrescina exógena. Pesquisa agropecuária brasileira , 2014; 49(1): 18-25.

  • Peoples MB, Faizah AW, Reakasem BE, Herridge DF. Methods for evaluating nitrogen fixation by nodulated legumes in the field. Australian Centre for International Agricultural Research Canberra, 1989: 1:89.

  • Sapeta H, Costa JM, Lourenço T, Marocod J, Lindee PVD, Oliveira MM. Drought stress response in Jatrophacurcas: Growth and physiology. Environmental and Experimental Botany , 2013, 85(1): 76-84.

  • Sharner DL, Boyer JS. Nitrate reductase activity in maize (Zea mays L.) leaves. Plant Physiology, 1976: 58(4): 499-504.

  • Silva MAda, Pessotti BMdeS, Zanini SF, Colnago GL, Nunes LdeC, Rodrigues MRA, Ferreira L. Óleo essencial de aroeira-vermelha como aditivo na ração de frangos de corte. Ciência Rural, 2011; 41(4): 676-681.

  • Slavick B. Methods of studying plant water relations. Nova York: Springer Verlang, 1979.

  • Sodek L. Metabolismo do nitrogênio. In: Kerbauy GB. Fisiologia vegetal. Rio de Janeiro: Guanabara Koogan, 2019.

  • Suwa R, Nguyen NT, Saneoka H., Moghaieb R, Fujita K. Effect of salinity stress on photosynthesis and vegetative sink in tobacco plants. Soil Science & Plant Nutrition, 2006; 52(2): 243-250.

  • Taiz L, Zeiger E, Møller IM, Murphy A. Estresse abiótico. In: Blumwald, E.; Mittler, R. Fisiologia Vegetal. Porto Alegre, Artmed, 2017.

  • Teixeira, D. T. de. F.; Nogueira, G. A. dos. S.; Maltarolo, B. M.; Ataíde, W. L. da. S.; Oliveira Neto, C. F. de. Alterações no metabolismo do nitrogênio em plantas de noni sob duas condições hídricas. Enciclopédia biosfera: Centro Científico Conhecer, 2015; 11 (22): 89-106.

  • Trovato M, Mattioli R, Costantino P. Multiple roles of proline in plant stress tolerance and development. Rendiconti Lincei, 2008; 19(4): 325-346.

  • Verma KK, Vatsa S, Gupta RK, Ranjan S, Verma CL; Singh M. Influence of water application on photosynthesis, growth and biomass characteristics in Jatropha curcas. Current Botany, 2012; 3(4): 26-30.

  • Wang LJ, Fan L, Loescher W, Duan W, Liu GJ, Cheng JS. Salicylic acid alleviates decreases in photosynthesis under heat stress and accelerates recovery in grapevine leaves. BMC Plant Biology, 2010; 10(1): 34-40.

  • Weatherburn MW. Phenol hipochlorite reaction for determination of ammonia. Analytical Chemistry, 1967; 39(8): 971-974.


Submitted date:
05/24/2021

Accepted date:
04/12/2022

628f8878a95395546b39b304 floram Articles

FLORAM

Share this page
Page Sections