Floresta e Ambiente
Floresta e Ambiente
Original Article Forest Products Science and Tecnology

Influence of Abrasive Blasting and Hot Pressing Preparation on the Pinus taeda Wood Surface

Ana Paula Namikata da Fonte, Marcio Pereira da Rocha, Pedro Henrique Gonzalez de Cademartori, Rui André Maggi dos Anjos

Downloads: 0
Views: 60


Metal particles are used in abrasive blasting to provide cleaning, new shapes, or fatigue resistance to surfaces, depending on the format of these particles. However, these particulates constitute large amounts of waste with no proper treatment. In this scenario, this paper aims to compare two surface treatment methods using metallic particles on Pinus taeda wood: abrasive blasting and hot pressing. The size and shape of the particles were determined by scanning electron microscopy (SEM) and their chemical constitution by energy-dispersive X-ray spectroscopy (EDX). After each treatment, the wood surface was subjected to wettability and colorimetric tests. The hot pressing treatment and the copper slag particles provided the lowest wettability. The color changes were significant after both methods, highlighting their potential as a new finishing technique.


Stainless steel grit; steel grit; copper slag; surface treatment; metallic particles


  • Bekhta P, Krystofiak T. The influence of short-term thermo-mechanical densification on the surface wettability of wood veneers. Maderas, Ciencia y tecnologia, Concepción 18(1): 79-90. 2016.

  • Bekhta, P.; Proszyk, S.; Krystofiak,. T.; Sedliacik, J.; Novak, I.; Mamonova, M. Effects of short-term thermomechanical densification on the structure and properties of wood veneers. Wood material science & engineering, 12(1): 40-54, 2017.

  • Bonfatti Júnior EA, Lengowski EC. Colorimetria aplicada à ciência e tecnologia da madeira. Pesquisa Florestal Brasileira. 38. 2018.

  • Bracconi P, Nyborg L. Quantitative phase analysis and thickness measurement of surface-oxide layers in metal and alloy powders by the chemical-granular method. Applied Surface Science. 133(1/2):129-147. 1998.

  • Camargos, J. A. A. & Gonçalez, J. C. A colorimetria aplicada como instrumento na elaboração de uma tabela de cores de madeira. Brasil Florestal, n. 71, p. 30-41, 2001.

  • Carvalho DE. Caracterização tecnológica e densificação termomecânica da madeira de Gmelina arborea Roxb. PhD Thesis, Dept. of Engineering Forestry, Federal University of Paraná, Brazil. 2020.

  • Chun T, Ning C, Long H, Li J, Yang J. Mineralogical characterization of copper slag from tongling nonferrous metals group China. Jom 68(9):2332-2340. 2016.

  • Grillo G, Krewer EJ. Produção mais limpa: um comparativo entre os processos de jato de escória de cobre e jato de granalha de aço. Revista Global Manager Acadêmica 7(1). 2018.

  • Goldstein JI, Newbury DE, Michael JR, Ritchie NW, Scott JHJ, Joy DC. Scanning electron microscopy and X-ray microanalysis. 554pp. Fourth Ed. Springer. 2018.

  • Junca E, Oliveira JR, Espinosa DCR, Tenório JAS. Iron recovery from the waste generated during the cutting of granite. International Journal of Environmental Science and Technology 12(2): 465-472. 2015.

  • Kutnar A, Šernek M. Densification of wood. Zbornik gozdarstva in lesarstva, 82: 53-62. 2007.

  • Meneguel L. Aproveitamento de resíduos de granalha de aço-carbono por metalurgia do pó. M.S. Thesis, Dept. of Engineering and Material Science, Caxias do Sul University. Caxias do Sul. 2017.

  • Midander K, Pan J, Leygraf C. Elaboration of a test method for the study of metal release from stainless steel particles in artificial biological media. Corrosion Science. 48(9): 2855-2866. 2006.

  • Nazer AS, Pavez O, Rojas F. Use of copper slag in cement mortar. Rem: Revista Escola de Minas. 65(1): 87-91. 2012.

  • Panda S, Mishra S, Rao DS, Pradhan N, Mohapatra U, Angadi S et al. Extraction of copper from copper slag: Mineralogical insights, physical beneficiation and bioleaching studies. Korean Journal of Chemical Engineering 32(4): 667-676. 2015.

  • Papp, E. A., Csiha, C. Contact angle as function of surface roughness of different wood species. Surfaces and Interfaces, 8: 54-59. 2017.

  • Prem PR, Verma M, Ambily PS. Sustainable cleaner production of concrete with high volume copper slag. Journal of Cleaner Production 193: 43-58. 2018.

  • Shahid L, Janabi-Sharifi F, Keenan P. Image segmentation techniques for real-time coverage measurement in shot peening processes. The International Journal of Advanced Manufacturing Technology 91(1-4): 859-867. 2017.

  • Sheen Y, Le D, Sun T. Innovative usages of stainless steel slags in developing self-compacting concrete. Construction and Building Materials 101: 268-276. 2015.

  • Shen, H.; Forssberg, E. An overview of recovery of metals from slags. Waste Manag. 23: 933-949. 2003.

  • Song, J.; Chen, C.; Zhu, S.; Zhu, M.; Dai, J.; Ray, U.; Li, Y., Kuang, Y.; Li, Y; Quispe, N.; Yao, Y.; Gong, A.; Leiste, U. H.; Bruck, H. A.; Zhu, J. Y. Vellore, A.; Li, H.; Minus, M. L.; Jia, Zheng.; Martini, A.; Li, T.; Hu, L. Processing bulk natural wood into a high-performance structural material. Nature, 554(7691): 224-228, 2018.

  • Vidilli AL, Afonso CRM, Amigó VB, Amigó AM, Riva R, Kiminami CS. Laser cladding de pós obtidos por moagem de alta energia de ligas nanocristalinas Ti-Nb-Fe-Sn In: 22º CBECiMat - Congresso Brasileiro de Engenharia e Ciência dos Materiais, Natal, RN, Brasil. 2016.

  • Vite-Torres M, Laguna-Camacho JR, Baldenebro-Castillo RE, Gallardo-Hernandez EA, Vera-Cárdenas EE, Vite-Torres J (2013) Study of solid particle erosion on AISI 420 stainless steel using angular silicon carbide and steel round grit particles. Wear 301(1-2): 383-389, 2013.

  • Yildirim IZ, Prezzi M. Chemical, mineralogical, and morphological properties of steel slag. Advances in Civil Engineering. 2011.

Submitted date:

Accepted date:

62cee038a95395440528bc93 floram Articles


Share this page
Page Sections