Floresta e Ambiente
Floresta e Ambiente
Original Article Silviculture

The Dynamics of Macro- and Micronutrients in Native Tree Species Affected by Copper Contamination

Matheus Casarini Siqueira, Shoey Kanashiro, Marisa Domingos, Mirian Cilene Spasiani Rinaldi, Armando Reis Tavares

Downloads: 0
Views: 58


This study was conducted to assess the physicochemical characteristics of urban forest soil contaminated by copper and the dynamics of macro- and micronutrients uptake by Schinus terebinthifolia and Eugenia uniflora seedlings. The seedlings received 0 (control), 60, 120, 180 or 240 mg Cu kg-1 soil applied to urban forest soil within São Paulo City, Brazil. Our results showed that K was reduced in Cu-contaminated soil used for S. terebinthifolia cultivation and that organic matter was higher in Cu- contaminated soil used for E. uniflora cultivation. Other physicochemical properties of soil remained unaltered. S. terebinthifolia presented nutritional imbalances in N, K and Mg on leaves, while E. uniflora presented nutritional imbalances in K on leaves and in S on roots. It can be concluded that copper contamination can negatively affect chemical and nutritional characteristics of urban forest soil, as well as the nutritional dynamics of S. terebinthifolia and E. uniflora.


Schinus terebinthifolia; Eugenia uniflora; pollution; heavy metal; nutrition


  • Adrees M, Ali S, Rizwan M, Ibrahim M, Abbas F, Farid M, Zia-ur-Rehman M, Irshad MK, Bharwana SA. The effect of excess copper on growth and physiology of important food crops: a review. Environmental Science and Pollution Research 2015; 22:8148-8162. doi:10.1007/s11356-015-4496-5.
    » https://doi.org/10.1007/s11356-015-4496-5

  • Andrés-Bordería A, Andrés F, Garcia-Molina A, Perea-García A, Domingo C, Puig S Peñarrubia L. Copper and ectopic expression of the Arabidopsis transport protein COPT1 alter iron homeostasis in rice (Oryza sativa L.). Plant Molecular Biology 2017; 95:17-32. doi:10.1007/s11103-017-0622-8.
    » https://doi.org/10.1007/s11103-017-0622-8

  • Argyraki A, Kelepertzis E, Botsou F, Paraskevopoulou V, Katsikis I, Trigoni M. Environmental availability of trace elements (Pb, Cd, Zn, Cu) in soil from urban, suburban, rural and mining areas of Attica, Hellas. Journal of Geochemical Exploration 2018; 187:201-213. doi:10.1016/j.gexplo.2017.09.004.
    » https://doi.org/10.1016/j.gexplo.2017.09.004

  • Bulbovas P, Camargo CZ, Ferreira ML, Domingos M. Anthropic interferences in the nutritional status of tree species growing in urban and peri-urban Atlantic forest remnants. Urban Forestry & Urban Greening 2020; 50:126642. doi:10.1016/j.ufug.2020.126642.
    » https://doi.org/10.1016/j.ufug.2020.126642

  • Campillo-Cora C, Fernández-Calviño D, Pérez-Rodríguez P, Fernández-Sanjurjo MJ, Núñez-Delgado A, Álvarez-Rodríguez E, Arias-Estévez M, Nóvoa-Muñoz JC. Copper and zinc in rhizospheric soil of wild plants growing in long-term acid vineyard soils. Insights on availability and metal remediation. Science of The Total Environment 2019; 672:389-399. doi:10.1016/j.scitotenv.2019.03.301.
    » https://doi.org/10.1016/j.scitotenv.2019.03.301

  • Cao Y, Ma C, Chen G, Zhang J, Xing B. Physiological and biochemical responses of Salix integra Thunb. under copper stress as affected by soil flooding. Environmental Pollution 2017; 225:644-653. doi:10.1016/j.envpol.2017.03.040.
    » https://doi.org/10.1016/j.envpol.2017.03.040

  • CETESB (Companhia Ambiental Do Estado De São Paulo) Valores orientadores para solo e água subterrânea no estado de São Paulo. Diário Oficial Estado de São Paulo - Caderno Executivo I (Poder Executivo, Seção I) 2016; 126, 55-56.

  • Chua J, Banua JM, Arcilla I, Orbecido A, Castro ME, Ledesma N, Belo L. Phytoremediation potential and copper uptake kinetics of Philippine bamboo species in copper contaminated substrate. Heliyon 2019; 5:e02440. doi:10.1016/j.heliyon.2019.e02440.
    » https://doi.org/10.1016/j.heliyon.2019.e02440

  • Dislich R, Pivello VR. Tree structure and species composition changes in an urban tropical forest fragment (São Paulo, Brazil) during a five-year interval. Boletim de Botânica da Universidade de São Paulo 2002; 20:1-12.

  • Farias JG, Nunes ST, Sausen D, Nunes MA, Neis FA, Garlet LC, Nunes PAA, Dressler VL, Schetinger MRC, Rossato LV, Girotto E, Brunetto G, Nicoloso FT. Agricultural contamination: Effect of copper excess on physiological parameters of potato genotypes and food chain security. Journal of Applied Botany and Food Quality 2018; 91:249-259. doi:10.5073/JABFQ.2018.091.033.
    » https://doi.org/10.5073/JABFQ.2018.091.033

  • Ferreira ML, Andrade NGV, Costa MCLD, Araujo DM, Côrtes PL, Quaresma CC, Conit DM, Camargo PB. Soil fertility and litterfall assessment in a peri-urban forest of São Paulo, SP: understanding for urban green areas manegement. Holos 2019; 35:1-16. doi:10.15628/holos.2019.8290.
    » https://doi.org/10.15628/holos.2019.8290

  • Freitas TA, França MGC, Almeida AAF, Oliveira SJR, Jesus RM, Souza VL, Silva JVS, Mangabeira PA. Morphology, ultrastructure and mineral uptake is affected by copper toxicity in young plants of Inga subnuda subs. luschnathiana (Benth.) TD Penn. Environmental Science and Pollution Research 2015; 22:15479-15494. doi:10.1007/s11356-015-4610-8.
    » https://doi.org/10.1007/s11356-015-4610-8

  • Girotto E, Ceretta CA, Rossato LV, Farias JG, Brunetto G, Miotto A, Tiecher TL, Conti L, Lourenzi CR, Schmatz R, Giachini A. Nicoloso FT. Biochemical changes in black oat (Avena strigosa Schreb) cultivated in vineyard soils contaminated with copper. Plant Physiology and Biochemistry 2016; 103:199-207. doi:10.1016/j.plaphy.2016.02.030.
    » https://doi.org/10.1016/j.plaphy.2016.02.030

  • Hippler FWR, Mattos Jr. D, Boaretto RM, Williams LE. Copper excess reduces nitrate uptake by Arabidopsis roots with specific effects on gene expression. Journal of Plant Physiology 2018; 228:158-165. doi:10.1016/j.jplph.2018.06.005.
    » https://doi.org/10.1016/j.jplph.2018.06.005

  • Hoagland D, Arnon DI. The water culture method for growing plants without soil. Berkeley. California Agricultural Experiment Station Press; 1950.

  • Hossain MS, Abdelrahman M, Tran CD, Nguyen KH, Chu HD, Watanabe Y, Hasanuzzaman M, Mohsin SM, Fujita M, Tran LSP. Insights into acetate-mediated copper homeostasis and antioxidant defense in lentil under excessive copper stress. Environmental Pollution 2020; 258:113544. doi:10.1016/j.envpol.2019.113544.
    » https://doi.org/10.1016/j.envpol.2019.113544

  • Hu C, Liu L, Li X, Xu Y, Ge Z, Zhao Y. Effect of graphene oxide on copper stress in Lemna minor L.: evaluating growth, biochemical responses, and nutrient uptake. Journal of Hazardous Materials 2018; 341:168-176. doi:10.1016/j.jhazmat.2017.07.061.
    » https://doi.org/10.1016/j.jhazmat.2017.07.061

  • Huo K, Shangguan X, Xia Y, Shen Z, Chen C. Excess copper inhibits the growth of rice seedlings by decreasing uptake of nitrate. Ecotoxicology and Environmental Safety 2020; 190:110105. doi:10.1016/j.ecoenv.2019.110105.
    » https://doi.org/10.1016/j.ecoenv.2019.110105

  • Juang KW, Lee YI, Lai HY, Chen BC. Influence of magnesium on copper phytotoxicity to and accumulation and translocation in grapevines. Ecotoxicology and Environmental Safety 2014; 104:36-42. doi:10.1016/j.ecoenv.2014.02.008.
    » https://doi.org/10.1016/j.ecoenv.2014.02.008

  • Karkush MO, Ali SD. Effects of copper sulfate contamination on the geotechnical behavior of clayey soils. Journal of GeoEngineering 2019; 14:47-52. doi:10.6310/jog.201903_14(1).6.
    » https://doi.org/10.6310/jog.201903_14(1).6

  • Kelepertzis E, Paraskevopoulou V, Argyraki A, Fligos G, Chalkiadaki O. Evaluation of single extraction procedures for the assessment of heavy metal extractability in citrus agricultural soil of a typical Mediterranean environment (Argolida, Greece). Journal of Soils and Sediments 2015; 15:2265-2275. doi:10.1007/s11368-015-1163-x.
    » https://doi.org/10.1007/s11368-015-1163-x

  • Kobayashi R, Kobayashi NI, Tanoi K, Masumori M, Tange T. Potassium supply reduces cesium uptake in Konara oak not by an alteration of uptake mechanism, but by the uptake competition between the ions. Journal of Environmental Radioactivity 2019; 208:106032. doi:10.1016/j.jenvrad.2019.106032.
    » https://doi.org/10.1016/j.jenvrad.2019.106032

  • Kumar V, Pandita S, Sidhu GPS, Sharma A, Khanna K, Kaur P, Bali AS, Setia R. Copper bioavailability, uptake, toxicity and tolerance in plants: a comprehensive review. Chemosphere 2020; 262:127810. doi:10.1016/j.chemosphere.2020.127810.
    » https://doi.org/10.1016/j.chemosphere.2020.127810

  • Laurent C, Bravin MN, Crouzet O, Pelosi C, Tillard E, Lecomte P, Lamy I. Increased soil pH and dissolved organic matter after a decade of organic fertilizer application mitigates copper and zinc availability despite contamination. Science of The Total Environment 2019; 709:135927. doi:10.1016/j.scitotenv.2019.135927.
    » https://doi.org/10.1016/j.scitotenv.2019.135927

  • Li C, Zhou K, Qin W, Tian C, Qi M, Yan X, Han W. A review on heavy metals contamination in soil: effects, sources, and remediation techniques. Soil and Sediment Contamination: An International Journal 2019; 28:380-394. doi:10.1080/15320383.2019.1592108.
    » https://doi.org/10.1080/15320383.2019.1592108

  • Li Q, Chen HH, Qi YP, Ye X, Yang LT, Huang ZR, Chen, LS. Excess copper effects on growth, uptake of water and nutrients, carbohydrates, and PSII photochemistry revealed by OJIP transients in Citrus seedlings. Environmental Science and Pollution Research 2019; 26(29):30188-30205. doi:10.1007/s11356-019-06170-2.
    » https://doi.org/10.1007/s11356-019-06170-2

  • Malavolta E Avaliação do estado nutricional das plantas. Piracicaba. POTAFOS; 1997.

  • Marastoni L, Sandri M, Pii Y, Valentinuzzi F, Brunetto G, Cesco S, Mimmo T. Synergism and antagonisms between nutrients induced by copper toxicity in grapevine rootstocks: monocropping vs. intercropping. Chemosphere 2019; 214:563-578. doi:10.1016/j.chemosphere.2018.09.127.
    » https://doi.org/10.1016/j.chemosphere.2018.09.127

  • Marco R, Silva RF, Andreazza R, Ros CO, Scheid DL, Bertollo GM. Copper phytoaccumulation and tolerance by seedlings of native Brazilian trees. Environmental Engineering Science 2016; 33(3):176-184. doi:10.1089/ees.2015.0307.
    » https://doi.org/10.1089/ees.2015.0307

  • Marques DM, Júnior VV, Silva AB, Mantovani JR, Magalhães PC, Souza TC. Copper toxicity on photosynthetic responses and root morphology of Hymenaea courbaril L. (Caesalpinioideae). Water, Air, & Soil Pollution 2018; 229:138. doi:10.1007/s11270-018-3769-2.
    » https://doi.org/10.1007/s11270-018-3769-2

  • Mezzavilla NV, Neto JJ. Avaliação do desenvolvimento de plântulas de aroeira (Schinus terebinthifolius R.) em diferentes concentrações de alumínio. Semioses 2017; 11:9-18. doi:10.15202/1981996x.2017v11n3p9.
    » https://doi.org/10.15202/1981996x.2017v11n3p9

  • Nakazato RK, Lourenço IS, Esposito MP, Lima ME, Ferreira ML, Campos OAR, Rinaldi MCS, Domingos M. Trace metals at the tree-litter-soil-interface in Brazilian Atlantic Forest plots surrounded by sources of air pollution. Environmental Pollution 2021; 268: 115797. doi:10.1016/j.envpol.2020.115797.
    » https://doi.org/10.1016/j.envpol.2020.115797

  • Printz B, Lutts S, Hausman JF, Sergeant K. Copper trafficking in plants and its implication on cell wall dynamics. Frontiers in Plant Science 2016; 7:601. doi:10.3389/fpls.2016.00601.
    » https://doi.org/10.3389/fpls.2016.00601

  • Raij BV, Andrade JC, Cantarella H, Quaggio JA. Análise química para avaliação da fertilidade de solos tropicais. Campinas. IAC; 2001.

  • Rehman M, Liu L, Wang Q, Saleem MH, Bashir S, Ullah S, Peng D. Copper environmental toxicology, recent advances, and future outlook: A review. Environmental Science and Pollution Research 2019; 26:18003-16. doi: 10.1007/s11356-019-05073-6.
    » https://doi.org/10.1007/s11356-019-05073-6

  • Saleem MH, Fahad S, Khan SU, Din M, Ullah A, Sabagh AE, Liu L. Copper-induced oxidative stress, initiation of antioxidants and phytoremediation potential of flax (Linum usitatissimum L.) seedlings grown under the mixing of two different soils of China. Environmental Science and Pollution Research 2020; 27:5211-5221. doi:10.1007/s11356-019-07264-7.
    » https://doi.org/10.1007/s11356-019-07264-7

  • Santos HG, Jacomine PKT, Anjos LHC, Oliveira VA, Lumbreras JF, Coelho MR, Almeida JA, Araujo Filho JC, Oliveira JB, Cunha TJF. Sistema brasileiro de classificação de solos. Brasília. Embrapa; 2018.

  • Seguel CG, Muñoz H, Segovia J, Ávalos B, Martín JR. Assessment of soil contamination in Caleta Vitor and surrounding areas, northern Chile, due to heavy metal enrichment caused by an abandoned copper mine. Interciencia 2019; 44:241-246.

  • Shabbir Z, Sardar A, Shabbir A, Abbas G, Shamshad S, Khalid S, Natasha, Murtaza G, Dumat C, Shahid M. Copper uptake, essentiality, toxicity, detoxification and risk assessment in soil-plant environment. Chemosphere 2020; 259:127436. doi:10.1016/j.chemosphere.2020.127436.
    » https://doi.org/10.1016/j.chemosphere.2020.127436

  • Siqueira MC, Kanashiro S, Domingos M, Rinaldi MCS, Tavares AR. Physiological and biochemical changes in tree seedlings growing in urban forest soil contaminated with copper in São Paulo, Brazil. Plant and Soil 2021; 464:149-163. doi:10.1007/s11104-021-04948-3.
    » https://doi.org/10.1007/s11104-021-04948-3

  • Souza VL, Almeida AAF, Souza JDS, Mangabeira PA, Jesus RM, Pirovani CP, Ahnert D, Baligar DC, Loguercio LL. Altered physiology, cell structure, and gene expression of Theobroma cacao seedlings subjected to Cu toxicity. Environmental Science and Pollution Research 2014; 21:1217-1230. doi: 10.1007/s11356-013-1983-4.
    » https://doi.org/10.1007/s11356-013-1983-4.

  • Vendruscolo D, Santana NA, Souto KM, Ferreira PA, Melo GWBD, Jacques RJS. Differential behavior of the summer cover crops in the absorption and translocation of copper. Ciência Rural 2018; 48:e20180005. doi:10.1590/0103-8478cr20180005.
    » https://doi.org/10.1590/0103-8478cr20180005

  • Wyszkowski M. Soil Contamination with copper and its effect on selected soil properties after applying neutralizing substances. Polish Journal of Environmental Studies 2019; 28:2465-2471. doi:10.15244/pjoes/90357.
    » https://doi.org/10.15244/pjoes/90357

  • Yruela I. Copper in plants: acquisition, transport and interactions. Functional Plant Biology 2009; 36:409-430. doi:10.1071/FP08288.
    » https://doi.org/10.1071/FP08288

  • Zabotto AR, França WS, Domingos M, Rinaldi MCS, Kanashiro S, Ferreira ML, Tavares AR. Copper accumulation and distribution in two arboreal species of the atlantic forest. Floresta e Ambiente 2020; 27:e20190027. doi:10.1590/2179-8087.002719.
    » https://doi.org/10.1590/2179-8087.002719

  • Zaouali W, Mahmoudi H, Salah IB, Mejri F, Casabianca H, Hosni K, Ouerghi Z. Copper-induced changes in growth, photosynthesis, antioxidative system activities and lipid metabolism of cilantro (Coriandrum sativum L.). Biologia 2020; 75:367-380. doi:10.2478/s11756-020-00419-9
    » https://doi.org/10.2478/s11756-020-00419-9

  • Zeng Q, Ling Q, Wu J, Yang Z, Liu R, Qi Y. Excess copper-induced changes in antioxidative enzyme activity, mineral nutrient uptake and translocation in sugarcane seedlings. Bulletin of Environmental Contamination and Toxicology 2019; 103:834-840. doi:10.1007/s00128-019-02735-6.
    » https://doi.org/10.1007/s00128-019-02735-6

Submitted date:

Accepted date:

617c59e3a9539537ac0df514 floram Articles


Share this page
Page Sections