Floresta e Ambiente
https://floram.org/article/doi/10.1590/2179-8087-FLORAM-2020-0079
Floresta e Ambiente
Original Article Forest Products Science and Tecnology

Effect of the post-heat treatment on the properties of medium density particleboard of Eucalyptus sp.

Ticyane Pereira Freire Sabino, Paula Gabriella Surdi, Alan Pereira Vilela, Stefânia Lima Oliveira Metzker, Nayane Pereira Freire Coelho, Tiago José Pires de Oliveira, Rafael Farinassi Mendes

Downloads: 0
Views: 889

Abstract

Heat treatment aims to reduce the compression stresses generated during the panel production, improving its dimensional stability and providing greater resistance to attack by xylophagous organisms, despite decreasing the mechanical properties. This work aimed to evaluate the physical-mechanical properties of medium density particleboard (MDP) of Eucalyptus sp. subjected to post-heat treatment with two temperature levels (200 and 260ºC) and two periods (5 or 10 minutes). The apparent density, water absorption and thickness swelling (TS) after 2 and 24h, internal bonding, MOE and MOR in static bending were evaluated. The post-heat treatment at 200 °C for 5 minutes was the most efficient, improving the TS, with smaller reductions in the mechanical properties. The temperature had a greater influence in the first hours of immersion in water (TS2h), while for a longer period (TS24h) the heat treatment time was more effective. The temperature influenced the mechanical properties more negatively than the heat treatment time.

Keywords

Composites; Dimensional stability; Physical-mechanical properties; Thermal modification

References

  • American Society for Testing and materials. ASTM D1037: Standard test methods for evaluating properties of wood-base fiber and particle panel materials. Philadelphia; 2012.

  • Associação Brasileira de Normas Técnicas. NBR 14810: Chapas de madeira aglomerada - requisitos. Rio de Janeiro; 2018.

  • Ayrilmis N, Laufenberg TL, Winandy JE. Dimensional stability and creep behavior of heat-treated exterior medium density fiberboard. European Journal of Wood and Wood Products 2009; 67: 287-295.

  • Ayrilmis N, Jarusombuti S, Fueangvivat V, Bauchongkol P. Effects of thermal treatment of rubberwood fibers on physical and mechanical properties of medium density fiberboard. Journal of Tropical Forest Science 2011; 23(1): 10-16.

  • Bekhta P. Effect of heat treatment on some physical and mechanical properties of birch plywood. European Journal of Wood and Wood Products 2020; 78: 683-691.

  • Borysiuk P, Jenczyk-Tolloczko I, Auriga R, Kordzikowski M. Sugar beet pulp as raw material for particleboard production. Industrial Crops and Products 2019; 141(1): 111829.

  • Carvalho AG, Mendes RF, Oliveira SL, Mendes LM. Effect of Post-production Heat Treatment on Particleboard from Sugarcane Bagasse. Materials Research 2015; 18(1): 78-84.

  • Cavdar AD, Mengeloglu F, Karakus K, Tomak ED. Effect of Chemical Modification with Maleic, Propionic, and Succinic Anhydrides on Some Properties of Wood Flour Filled HDPE Composites. BioResources 2014; 9(4): 6490-6503.

  • Del Menezzi CHS, Ribeiro RB, Sterndat GH, Teixeira DE, Okino EYA. Effect of thermal post-treatment on some surface related properties of oriented strandboards. Drvna Industrija 2008; 59(2): 61-67.

  • Del Menezzi CHS, Tomaselli I, Okino EYA, Teixeira DE, Santana MAE. Thermal modification of consolidated oriented strand boards: effects on dimensional stability, mechanical properties, chemical composition and surface color. European Journal of Wood and Wood Products 2009; 67(4): 383-396.

  • Deutsches Institut Für Normung. DIN 52362: Testing of wood chipboards, bending test, determination of bending strength. Germany; 1982.

  • European Committee for Standardization. EN 312: Particleboard: specifications. Bruxelas; 2003.

  • Figueroa MJM, Moraes PD. Comportamento da madeira a temperaturas elevadas. Ambiente Construído 2009; 9(4): 157-174.

  • Food and Agriculture Organization - FAO. FAOSTAT: Forestry production and trade (2020). Available from: http://www.fao.org/faostat/en/#data/FO
    » http://www.fao.org/faostat/en/#data/FO

  • Hill C, Altgen M, Rautkari L. Thermal modification of wood-a review: chemical changes and hygroscopicity. Journal of Materials Science 2021; https://doi.org/10.1007/s10853-020-05722-z
    » https://doi.org/10.1007/s10853-020-05722-z

  • Indústria Brasileira de Árvores - IBÁ. Relatório 2019: ano base 2018. 80p. Brasília: 2019.

  • Iwakiri S, Stinghen ABM, Silveira EL, Zamarian EHC, Prata JG, Bronoski M. Influência da massa específica sobre as propriedades mecânicas de painéis aglomerados. Floresta 2008; 38(3): 487-493.

  • Kaboorani A, Riedl B. Improving performance of polyvinyl acetate (PVA) as a binder for wood by combination with melamine based adhesives. International Journal of Adhesion and Adhesives 2011; 31: 605-611.

  • Kocaefe D, Poncsak S, Tang J, Bouazara M. Effect of heat treatment on the mechanical properties of North American jack pine: thermogravimetric study. Journal of Materials Science 2010; 45: 681-687.

  • Lee SH, Lum WC, Zaidon A, Maminski M. Microstructural, mechanical and physical properties of post heat-treated melamine-fortified urea formaldehyde-bonded particleboard. European Journal of Wood and Wood Products 2015; 73: 607-616.

  • Lee SH, Ashaari Z, Lum WC, Ang AF, Halip JA, Halis R. Chemical, physico-mechanical properties and biological durability of rubberwood particleboards after post heat-treatment in palm oil. Holzforschung 2017; 72 (2): 159-167.

  • Lunguleasa A, Ayrilmis N, Spirchez C, Özdemir F. Investigation of the effects of heat treatment applied to beech plywood. Drvna Industrija 2018; 69(4): 349-355.

  • Majka J, Czajkowski Ł, Olek W. Effects of cyclic changes in relative humidity on the sorption hysteresis of thermally modified spruce wood. BioResources 2016; 11: 5265-6275.

  • Maloney TM. Modern particleboard and dry-process fiberboard manufacturing. San Francisco: M. Freeman; 1993.

  • Melo RR, Muhl M, Stangerlin DM, Alfenas RF, Rodolfo Junior F. (2018). Properties of particleboards submitted to heat treatments. Ciência Florestal 2018; 28(2), 776-783.

  • Mendes RF, Bortoletto Júnior G, Almeida NF, Surdi PG, Barbeiro IN. Effect of thermal treatment on properties of OSB panels. Wood Science and Technology 2013a; 47:243-256.

  • Mendes RF, Bortoletto Júnior G, Almeida NF, Surdi PG, Barbeiro IN. Effects of thermal pre-treatment and variables of production on properties of OSB panels of Pinus taeda. Maderas: Ciencia y tecnologia 2013b; 15(2): 141-152.

  • Mendes, RF, Baleeiro, NS, Mendes, LM, Scatolino, MV, Oliveira, SL, Protásio, TP. Particleboard Panels Produced with Different Radial Positions of Pinus oocarpa Wood. Floresta e Ambiente 2018; 25(1): e00114514.

  • Narciso CRP, Reis, AHS, Mendes, JF, Nogueira ND, Mendes RF. Potential for the Use of Coconut Husk in the Production of Medium Density Particleboard. Waste and Biomass Valorization 2020; https://doi.org/10.1007/s12649-020-01099-x
    » https://doi.org/10.1007/s12649-020-01099-x

  • Nuopponen M, Vuorinen T, Jämsä S, Viitaniemi P. The effects of a heat treatment on the behavior of extractives in softwood studied by FTIR spectroscopic methods. Wood Science and Technology 2003; 37: 109-115.

  • Okino EYA, Teixeira DE, Del Menezzi CHS. Post-thermal treatment of oriented strandboard (OSB) made from Cypress (Cupressus glauca Lam.). Maderas: Ciencia y tecnologia 2007; 9(3): 199-210.

  • Oliveira SL, Freire TP, Mendes, LM, Mendes RF. The Effect of Post-Heat Treatment in MDF Panels. Materials Research 2017; 20(1): 183-190.

  • Özgenç Ö, Durmaz S, Boyaci IH, Eksi-Kocak H. Determination of chemical changes in heat-treated wood using ATR-FTIR and FT Raman spectrometry. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2017; 171: 395-400.

  • Poncsák S, Shi SQ, Kocaefe D, Miller G. Effect of thermal treatment of wood lumbers on their adhesive bond strength and durability, J. Adhes. Sci. Technol 2007; 21(8): 745-754.

  • Ribeiro DP, Vilela AP, Silva DW, Napoli A, Mendes RF. Effect of Heat Treatment on the Properties of Sugarcane Bagasse Medium Density Particleboard (MDP) Panels. Waste and Biomass Valorization 2020; 11: 6429-6441.

  • Salca EA, Hiziroglu S. Evaluation of hardness and surface quality of different wood species as function of heat treatment. Materials and Design 2014; 62: 416-423.

  • Sivonen H, Maunu SL, Sundholm F, Jämsä S, Viitaniemi P. Magnetic Resonance Studies of Thermally Modified Wood. Holzforschung 2002; 56(6): 648-654.

  • Silva CMS, Vital BR, Carneiro ACO, Oliveira AC, Araújo SO, Magalhães MA. Energy properties of wood particles torrefied at different temperatures. Revista Árvore 2017; 41(4): e410404.

  • Silva CMS, Carneiro ACO, Vital BR, Figueiró CG, Fialho LF, Magalhães MA et al. Biomass torrefaction for energy purposes - Definitions and an overview of challenges and opportunities in Brazil. Renewable and Sustainable Energy Reviews 2018; 82: 2426-2432.

  • Soratto DN, Silva CM, Vital BR, Carneiro ACO, Bianche JJ, Boschetti WN et al. Effect of thermal treatment variables on the thermogravimetric properties of eucalypt wood. Maderas: Ciencia y tecnología 2020; 22(2): 241-250.

  • Stefanowski BK, Curling SF, Ormondroyd GA. Evaluating mould colonisation and growth on MDF panels modified to sequester volatile organic compounds. International Wood Products Journal 2016; 7: 188-194.

  • Surdi PG, Bortoletto Junior G, Castro VR. Evaluating the Effects of Removing Fines from Particleboards Manufactured from Amazonian Wood Residue. Floresta e Ambiente 2018; 25(3): e20170490.

  • Tarmian A, Mastouri A. Changes in moisture exclusion efficiency and crystallinity of thermally modified wood with aging. iForest - Biogeosciences and Forestry 2019; 12(1): 92-97.

  • Tjeerdsma BF, Militz H. Chemical changes in hydrothermal treated wood: FTIR analysis of combined hydrothermal and dry heat-treated wood. Holz Roh Werkst 2005; 63: 102-111.

  • Uimonen T, Hautamäki S, Altgen M, Kymäläinen M, Rautkari L. Dynamic vapour sorption protocols for the quantification of accessible hydroxyl groups in wood. Holzforschung 2020; 74(4): 412-419.

  • Van der Stelt MJC, Gerhauser H, Kiel JHA, Ptasinski KJ. Biomass upgrading by torrefaction for the production of biofuels: A review. Biomass & Bioenergy 2011; 35: 3748-62.

  • Wang L, Barta-Rajnai E, Skreiberg Ø, Khalil R, Czégény Z, Jakab E et al. Effect of torrefaction on physiochemical characteristics and grindability of stem wood, stump and bark. Applied Energy 2018; 227: 137-148.

  • Wang N, Zhan H, Zhuang X, Xu B, Yin X, Wang X et al. Torrefaction of waste wood-based panels: More understanding from the combination of upgrading and denitrogenation properties. Fuel Processing Technology 2020; 206: 106462.

  • Winandy JE, Krzysik AM. Thermal degradation of wood fibers during hot-pressing of MDF composites: part I. relative effects and benefits of thermal exposure. Wood and Fiber Science 2007; 39(3): 450-461.

  • Xiangquan Z, Renshu L, Weihong W, Anbin P. Heat Post-Treatment to Reduce Thickness Swelling of Particleboard from Fast-Growing Poplars. Journal of Forest Research 1997; 8(3): 188-190.

  • Yildiz S, Gümüşkaya E. The effects of thermal modification on crystalline structure of cellulose in soft and hardwood. Building and Environment 2007; 42(1): 62-67.


Submitted date:
10/07/2020

Accepted date:
06/08/2021

60edb46ba953953e853ba0e2 floram Articles

FLORAM

Share this page
Page Sections