Floresta e Ambiente
Floresta e Ambiente
Original Article Forest Management

Soil Organic Matter Fractions Under Eucalypt Plantation in Reform Management

Emanuelle Merces Barros Soares; Rafael da Silva Teixeira; Rodrigo Nogueira de Sousa; Aline de Almeida Vasconcelos; Ivo Ribeiro da Silva

Downloads: 0
Views: 8


ABSTRACT: Harvesting and reform in eucalyptus can lead to changes in soil organic matter (SOM). The objective of this work was to evaluate the changes in total organic C (TOC) and N (NT), C and N in humic acid (HA), fulvic acid (FH), light organic matter (LOM) and microbial biomass (MB), in Ultisol of eucalypt stands over one, two and four years of renovated areas in Rio Grande do Sul state. After the first year of eucalyptus reform, there were 78% of increases in TOC (0.0-1.0-m soil layer). After two years, there was an increase in TN and an average reduction of 52% in LOM-C (0.0-0.1-m soil layer). FA-C, HA-C, and HU-C presented mean reductions of 43 Mg ha–1 (0.0-1.0-m soil layer) after four years of reform. The litter contribution of previous crop and the crop residues from the harvest resulted in increments of the SOM fractions. However, there is a negative effect in later years.


forest soils, reform, humic substances, microbial biomass, light organic matter


Amiro BD, Barr AG, Barr JG, Black TA, Bracho R, Brown M et al. Ecosystem carbon dioxide fluxes after disturbance in forests of North America. Journal of Geophysical Research Biogeosciences 2000; 115(G4).

Barreto PAB, Gama-Rodrigues EF, Gama-Rodrigues AC. Carbono das frações da matéria orgânica em solos sob plantações de eucalipto de diferentes idades. Scientia Forestalis 2014; 42: 581-590.

Chatterjee A, Vance GF, Pendall E, Stahl PD. Timber harvesting alters soil carbon mineralization and microbial community structure in coniferous forests. Soil Biology & Biochemistry 2008; 40(7): 1901-1907. http://dx.doi.org/10.1016/j.soilbio.2008.03.018.

Cotrufo MF, Wallenstein M, Boot C, Denef K, Paul E. The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter? Global Change Biology 2013; 19(4): 988-995. http://dx.doi.org/10.1111/gcb.12113. PMid:23504877.

Dias MS Jr, Fonseca S, Araújo CF Jr, Silva AR. Soil compaction due to forest harvest operations. Pesquisa Agropecuária Brasileira 2007; 42(2): 257-264. http://dx.doi.org/10.1590/S0100-204X2007000200015.

Faria GE, Barros NF, Silva IR, Novais RF, Paiva AO. Carbono orgânico total e frações da matéria orgânica em diferentes distâncias da cepa de eucalipto. Cerne 2008; 14: 259-266.

Fernandes MM, Carvalho MGC, Araujo JMR, Melo FR, Silva CA, Sampaio FMT et al. Matéria orgânica e biomassa microbiana em plantios de eucalipto no Cerrado Piauiense. Floresta e Ambiente 2012; 19(4): 453-459. http://dx.doi.org/10.4322/floram.2012.061.

Ferreira GW, Soares BEM, Oliveira FCC, Silva IR, Dungait JAJ, Souza IF et al. Nutrient release from decomposing Eucalyptus harvest residues following simulated management practices in multiple sites in Brazil. Forest Ecology and Management 2016; 70: 1-11. http://dx.doi.org/10.1016/j.foreco.2016.03.047.

Fontaine S, Barot S, Barre P, Bdioui N, Mary B, Rumpel C. Stability of organic carbon in deep soil layers controlled by fresh fcarbon supply. Nature 2007; 450(7167): 277-280. http://dx.doi.org/10.1038/nature06275. PMid:17994095.

Food and Agriculture Organization – FAO. Planted forests in sustainable forest management. a statement of principles. Rome; 2010.

Herrero C, Juez L, Tejedor C, Pando V, Bravo F. Importance of root system in total biomass for Eucalyptus globulus in northern Spain. Biomass and Bioenergy 2014; 67: 212-222. http://dx.doi.org/10.1016/j.biombioe.2014.04.023.

Indústria Brasileira de Árvores – IBÁ. Relatório anual de atividades: ano base 2015. São Paulo; 2016.

Islam KR, Weil RR. Microwave irradiation of soil for routine measurement of microbial biomass carbon. Biology and Fertility of Soils 1998; 27(4): 408-416. http://dx.doi.org/10.1007/s003740050451.

Jesus GL, Silva IR, Almeida LFJ, Santos MA, Leite FP, Neves JCL. Produtividade do eucalipto, atributos físicos do solo e frações da matéria orgânica influênciadas pela intensidade de tráfego e resíduos de colheita. Revista Brasileira de Ciência do Solo 2015; 39(4): 1190-1203. http://dx.doi.org/10.1590/01000683rbcs20140494.

Jindaluang W, Kheoruenromne I, Suddhiprakarn A, Singh BP, Singh B. Influence of soil texture and mineralogy on organic matter content and composition in physically separated fractions soils in Thailand. Geoderma 2013; 195–196: 207-219. http://dx.doi.org/10.1016/j.geoderma.2012.12.003.

Kuzyakov Y. Priming effects: Interactions between living and dead organic matter. Soil Biology & Biochemistry 2010; 42(9): 1363-1371. http://dx.doi.org/10.1016/j.soilbio.2010.04.003.

Laclau JP, Nouvellon Y, Reine C, Gonçalves JLM, Krushe AV, Jourdan C et al. Mixing eucalyptus and Acacia trees leads to fine root over-yielding and vertical segregation between species. Oecologia 2013; 172(3): 903-913. http://dx.doi.org/10.1007/s00442-012-2526-2. PMid:23180423.

Lupatini M, Jacques RJS, Antoniolli ZI, Suleiman AKA, Fulthorpe RR, Roesch LFW. Land-use change and soil type are drivers of fungal and archaeal communities in the Pampa biome. World Journal of Microbiology & Biotechnology 2013; 29(2): 223-233. http://dx.doi.org/10.1007/s11274-012-1174-3. PMid:23054698.

Mack J, Hatten J, Sucre E, Roberts S, Leggett Z, Dewey J. The effect of organic matter manipulations on site productivity, soil nutrients, and soil carbon on a southern loblolly pine plantation. Forest Ecology and Management 2014; 326: 25-35. http://dx.doi.org/10.1016/j.foreco.2014.04.008.

Maluf JRT. Nova classificação climática do estado do Rio Grande do Sul. R Bras Agrometeorol. 2000; 8: 141-150.

Mathers NJ, Mendham DS, O’Connell AM, Grove TS, Xu Z, Saffigna PG. How does residue management impact soil organic matter composition and quality under Eucalyptus globulus plantations in southwestern Australia? Forest Ecology and Management 2003; 179(1-3): 253-267. http://dx.doi.org/10.1016/S0378-1127(02)00527-3.

Moreno JA. Clima do Rio Grande do Sul. Porto Alegre: Secretaria da Agricultura; 1961.

Nave LE, Vance ED, Swanston CW, Curtis PS. Harvest impacts on soil carbon storage in temperature forests. Forest Ecology and Management 2010; 259(5): 857-866. http://dx.doi.org/10.1016/j.foreco.2009.12.009.

Ndaw SM, Gama-Rodrigues AC, Gama-Rodrigues ES, Sales KRN, Rosado AS. Relationships between bacterial diversity, microbial biomass, and litter quality in soils under different plant covers in northern Rio de Janeiro State, Brazil. Canadian Journal of Microbiology 2009; 55(9): 1089-1095. http://dx.doi.org/10.1139/W09-066. PMid:19898551.

Oliveira AH, Silva MLN, Curi N, Avanzi JC, Klinke G No, Araújo EF. Water erosion in soils under eucalyptus forest as affected by development stages and management systems. Ciência e Agrotecnologia 2013; 37(2): 159-169. http://dx.doi.org/10.1590/S1413-70542013000200007.

Pegoraro RF, Silva IR, Novais RF, Barros NF, Fonseca S, Dambroz CS. Estoques de carbono e nitrogênio nas frações da matéria orgânica em argissolo sob eucalipto e pastagem. Ciência Florestal 2011; 21(2): 261-273. http://dx.doi.org/10.5902/198050983230.

Rasse DP, Rumpel C, Dignac MF. Is soil carbon mostly root carbon? Mechanisms for a specific stabilization. Plant and Soil 2005; 269(1-2): 341-356. http://dx.doi.org/10.1007/s11104-004-0907-y.

Sisti CPJ, Santos HP, Kohhann R, Alves BJR, Urquiaga S, Boddey RM. Change in carbon and nitrogen stocks in soil under 13 years of conventional or zero tillage in southern Brazil. Soil & Tillage Research 2004; 76(1): 39-58. http://dx.doi.org/10.1016/j.still.2003.08.007.

Sohi SP, Mahieu N, Arah JRM, Powlson DS, Madari B, Gaunt JL. A procedure for isolating soil organic matter fractions suitable for modeling. Soil Science Society of America Journal 2001; 65(4): 1121-1128. http://dx.doi.org/10.2136/sssaj2001.6541121x.

Strömgren M, Egnell G, Olsson BA. Carbon stocks in four forest stands in Sweden 25 years after harverting of slash and stumps. Forest Ecology and Management 2013; 290: 59-66. http://dx.doi.org/10.1016/j.foreco.2012.06.052.

Swift RS. Method for extraction of IHSS soil fulvic and humic acids. In: Sparks DL, Parks DL, Page AL, Helmke PA, Loeppert RH, Soltanpour PN et al., editors. Methods of soil analysis. Part 3: chemical methods. Madison: Soil Science Society American Books; 1996. p. 1018-1020.

Tedesco HJ, Volkweiss SJ, Bohnen H. Análises de solo, plantas e outros materiais. Porto Alegre: Universidade Federal do Rio Grande do Sul; 1985. 50 p. (Boletim Técnico; no. 5).

Versini A, Nouvellon Y, Laclau J-P, Kinana A, Mareschal L, Zeller B et al. The manipulation of organic residues affects tree growth and heterotrophic CO2 efflux in a tropical eucalyptus plantation. Forest Ecology and Management 2013; 301: 79-88. http://dx.doi.org/10.1016/j.foreco.2012.07.045.

Yeomans JC, Bremner JM. A rapid and precise method for routine determination of organic carbon in soil. Communications in Soil Science and Plant Analysis 1988; 13: 146.

5cd48a500e8825155c7f3256 floram Articles
Links & Downloads


Share this page
Page Sections