Floresta e Ambiente
Floresta e Ambiente
Original Article Wood Science and Technology

Resistance of TiO2-treated Eucalyptus botryoides Wood to the Fungus Ganoderma applanatum

Paula Zanatta; Patrícia Soares Bilhalva dos Santos; Taline Mattoso; Marília Lazarotto; Mario Lucio Moreira; Rafael Beltrame; Darci Alberto Gatto


ABSTRACT: The aim of the present study is to investigate the resistance of Eucalyptus botryoides treated with TiO2 particles to attack by the fungus Ganoderma applanatum. The Bethel treatment method was applied to wood specimens (25 × 25 × 9 mm) and compared to CCB. The wood was subjected to the accelerated decay test and characterized through Rockwell Hardness and Fourier Transform Infrared Spectroscopy (FT-IR). The TiO2-treated wood showed lower degradation and greater resistance to the penetration of a steel sphere (Rockwell Hardness) than the untreated wood. In addition, the results of the TiO2 treatment were statistically equal to those of CCB. The FT-IR analysis showed that the fungus degraded lignin and hemicellulose in untreated samples. The present results showed the TiO2 efficiency in forming a protective layer on the cell wall and in preventing the development of microorganisms, a fact that verifies its fungicidal action on wood.


wood preservation, titanium dioxide, wood degradation


American Society for Testing and Materials – ASTM. ASTM D 2395-93: test methods for specific gravity of wood and wood-base materials. Philadelphia; 1995.

American Society for Testing and Materials – ASTM. ASTM D 2017: standard method for accelerated laboratory test of natural decay resistance of woods. Philadelphia; 2005.

Associação Brasileira de Normas Técnicas – ABNT. NBR 9480: mourões de madeira preservada para cercas. Rio de Janeiro; 1986.

Bari E, Nazarnezhad N, Kazemi SM, Tajick Ghanbary MA, Mohebby B, Schmidt O et al. Comparison between degradation capabilities of the white rot fungi Pleurotus ostreatus and Trametes versicolor in beech wood. International Biodeterioration & Biodegradation 2015; 104: 231-237. http://dx.doi.org/10.1016/j.ibiod.2015.03.033.

Brand MA, Anzaldo J, Moreschi JC. Novos produtos para o tratamento preservante da madeira: perspectivas da pesquisa e utilização. Floresta 2006; 36(1): 129-138. http://dx.doi.org/10.5380/rf.v36i1.5600.

Cademartori PHG, Schneid E, Gatto DA, Beltrame R, Stangerlin DM. Modification of static bending strength properties of Eucalyptus grandis heat-treated wood. Materials Research 2012; 15(6): 922-927. http://dx.doi.org/10.1590/S1516-14392012005000136.

Chen F, Yang X, Wu Q. Antifungal capability of TiO2 coated film on moist wood. Building and Environment 2009; 44(5): 1088-1093. http://dx.doi.org/10.1016/j.buildenv.2008.07.018.

Chen J, Zhou Y, Nan Q, Sun Y, Ye X, Wang Z. Synthesis, characterization and infrared emissivity study of polyurethane/TiO2 nanocomposites. Applied Surface Science 2007; 253(23): 9154-9158. http://dx.doi.org/10.1016/j.apsusc.2007.05.046.

De Filpo G, Palermo AM, Rachiele F, Nicoletta FP. Preventing fungal growth in wood by titanium dioxide nanoparticles. International Biodeterioration & Biodegradation 2013; 85: 217-222. http://dx.doi.org/10.1016/j.ibiod.2013.07.007.

Delucis RA, Gatto DA, Cademartori PHG, Missio AL, Schneid E. Propriedades físicas da madeira termorretificada de quatro folhosas. Floresta e Ambiente 2014; 21(1): 99-107. http://dx.doi.org/10.4322/floram.2014.008.

Fabbri AA, Ricelli A, Brasini S, Fanelli C. Effect of different antifungals on the control of paper biodeterioration caused by fungi. International Biodeterioration & Biodegradation 1997; 39(1): 61-65. http://dx.doi.org/10.1016/S0964-8305(97)00001-2.

Foster HA, Ditta IB, Varghese S, Steele A. Photocatalytic disinfection using titanium dioxide: spectrum and mechanism of antimicrobial activity. Applied Microbiology and Biotechnology 2011; 90(6): 1847-1868. http://dx.doi.org/10.1007/s00253-011-3213-7. PMid:21523480.

Harandi D, Ahmadi H, Mohammadi Achachluei M. Comparison of TiO2 and ZnO nanoparticles for the improvement of consolidated wood with polyvinyl butyral against white rot. International Biodeterioration & Biodegradation 2016; 108: 142-148. http://dx.doi.org/10.1016/j.ibiod.2015.12.017.

Huang Z, Maness PC, Blake DM, Wolfrum EJ, Smolinski SL, Jacoby WA. Bactericidal mode of titanium dioxide photocatalysis. Journal of Photochemistry and Photobiology A Chemistry 2000; 130(2-3): 163-170. http://dx.doi.org/10.1016/S1010-6030(99)00205-1.

Markowska-Szczupak A, Ulfig K, Morawski A. The application of titanium dioxide for deactivation of bioparticulates: an overview. Catalysis Today 2011; 169(1): 249-257. http://dx.doi.org/10.1016/j.cattod.2010.11.055.

Mesquita N, Portugal A, Videira S, Rodríguez-Echeverría S, Bandeira AML, Santos MJA et al. Fungal diversity in ancient documents. A case study on the archive of the University of Coimbra. International Biodeterioration & Biodegradation 2009; 63(5): 626-629. http://dx.doi.org/10.1016/j.ibiod.2009.03.010.

Oliveira JTS, Souza LC, Della Lucia RM, Souza WP Jr. Influência dos extrativos na resistência ao apodrecimento de seis espécies de madeira. Revista Árvore 2005; 29(5): 819-826. http://dx.doi.org/10.1590/S0100-67622005000500017.

Poletto M, Zattera A, Santana RMC. Thermal decomposition of wood: kinetics and degradation mechanisms. Bioresource Technology 2012; 126: 7-12. http://dx.doi.org/10.1016/j.biortech.2012.08.133. PMid:23073083.

Salem MZM, Zidan YE, Mansour MMA, El Hadidi NMN, Abo Elgat WAA. Antifungal activities of two essential oils used in the treatment of three commercial woods deteriorated by five common mold fungi. International Biodeterioration & Biodegradation 2016; 106: 88-96. http://dx.doi.org/10.1016/j.ibiod.2015.10.010.

Santos PSB, Erdocia X, Gatto DA, Labidi J. Bio-oil from base-catalyzed depolymerization of organosolv lignin as an antifungal agent for wood. Wood Science and Technology 2016; 50(1): 599-615. http://dx.doi.org/10.1007/s00226-015-0795-8.

Shabir Mahr M, Hübert T, Stephan I, Militz H. Decay protection of wood against brown-rot fungi by titanium alkoxide impregnations. International Biodeterioration & Biodegradation 2013; 77: 56-62. http://dx.doi.org/10.1016/j.ibiod.2012.04.026.

Stangerlin DM, Costa AF, Pastore TCM, Garlet A. Dureza Rockwell da madeira de três espécies amazônicas submetidas a ensaios de apodrecimento acelerado. Ciência Rural 2013; 43(4): 623-630. http://dx.doi.org/10.1590/S0103-84782013005000022.

Vivian MA, Santini EJ, Modes KS, Carvalho DE, Morais WWC. Resistência biológica da madeira tratada de duas espécies de Eucalyptus em ensaio de campo. Pesquisa Florestal Brasileira 2014; 34(80): 425-433. http://dx.doi.org/10.4336/2014.pfb.34.80.545.

Weigenand O, Humar M, Daniel G, Militz H, Mai C. Decay resistance of wood treated with amino-silicone compounds. Holzforschung 2008; 62(1): 112-118. http://dx.doi.org/10.1515/HF.2008.016.

Witomski P, Olek W, Bonarski JT. Changes in strength of Scots pine wood (Pinus silvestris L.) decayed by brown rot (Coniophora puteana) and white rot (Trametes versicolor). Construction & Building Materials 2016; 102: 162-166. http://dx.doi.org/10.1016/j.conbuildmat.2015.10.109.

Wunderlich W, Oekermann T, Miao L, Tanemura LM. Electronic properties of nano-porous TiO 2-and ZnO thin films comparison of simulations and experiments. Journal of Ceramic Processing Research 2004; 5(4): 343-354.

5b5777670e8825b5768b4567 floram Articles
Links & Downloads


Share this page
Page Sections