Floresta e Ambiente
http://floram.org/article/doi/10.1590/2179-8087.007715
Floresta e Ambiente
Original Article Forest Management

Soil Stabilization with Lime for the Construction of Forest Roads

Reginaldo Sérgio Pereira; Fabiano Emmert; Eder Pereira Miguel; Alcides Gatto

Abstract

ABSTRACT: The mechanical performance of soil stabilization using lime to improve forest roads was assessed. This study was conducted with lateritic soil (LVAd30) using lime content of 2% in the municipality of Niquelândia, Goiás state, Brazil. Geotechnical tests of soil characterization, compaction, and mechanical strength were performed applying different compaction efforts and curing periods. The results showed that lime content significantly changed the mechanical performance of natural soil, increasing its mechanical strength and load-carrying capacity. Compaction effort and curing time provided different responses in the unconfined compressive strength (UCS) and California Bearing Ratio (CBR) tests. The best UCS value (786.59 kPa) for the soil-lime mixture was achieved with modified compaction effort and curing time of 28 days. In the CBR test, soil-lime mixtures compacted at intermediate and modified efforts and cured for 28 days were considered for application as subbase material of flexible road pavements, being a promising alternative for use in layers of forest roads.

Keywords

flexible pavements, forest transportation, lateritic soil, forest management

References

Aldaood A, Bouasker M, Al-Mukhtar M. Free swell potential of lime-treated gypseous soil. Applied Clay Science 2014; 102(12): 93-103. http://dx.doi.org/10.1016/j.clay.2014.10.015.

Al-Mukhtar M, Lasledj A, Alcover JF. Behaviour and mineralogy changes in lime-treated expansive soil at 20 °C. Applied Clay Science 2010; 50(2): 191-198. http://dx.doi.org/10.1016/j.clay.2010.07.023.

Associação Brasileira de Normas Técnicas – ABNT. NBR 7182: solo-ensaio de compactação. Rio de Janeiro: ABNT; 1986. 10 p.

Associação Brasileira de Normas Técnicas – ABNT. NBR 6502: rochas e solos. Rio de Janeiro: ABNT; 1995. 18 p.

Bergaya F, Theng BKG, Lagaly G, editors. Handbook of clay science. Amsterdam: Elsevier; 2006. 1224 p.

Consoli NC, Lopes LS Jr, Heineck KS. Key parameters for the control of lime stabilized soils. Journal of Materials in Civil Engineering 2009; 21(5): 210-216. http://dx.doi.org/10.1061/(ASCE)0899-1561(2009)21:5(210).

Cristelo N, Glendinning S, Jalali S. Subbases of residual granite soil stabilized with lime. Soils and Rocks 2009; 32(2): 83-88.

Dash SK, Hussain M. Lime stabilization of soils: reappraisal. Journal of Materials in Civil Engineering 2012; 24(6): 707-714. http://dx.doi.org/10.1061/(ASCE)MT.1943-5533.0000431.

Departamento Nacional de Estradas de Rodagem – DNER. ME 049: solos-determinação do índice de suporte califórnia utilizando amostras não trabalhadas. Rio de Janeiro: DNER; 1994. 12 p.

Departamento Nacional de Infraestrutura de Transportes – DNIT. Manual de pavimentação. 3rd ed. Rio de Janeiro: DNIT; 2006. 274 p.

Ferreira RC, Faleiro HT, Freire HJ. Desempenho físico-químico de solo argiloso estabilizado com cal e silicato de sódio visando aplicação em construções rurais. Pesquisa Agropecuária Tropical 2005; 35(3): 191-198.

Harichane K, Ghrici M, Kenai S, Grine K. Use of natural pozzolana and lime for stabilization of cohesive soils. Geotechnical and Geological Engineering 2011; 29(5): 759-769. http://dx.doi.org/10.1007/s10706-011-9415-z.

Hossain KMA, Lachemi M, Easa S. Stabilized soils for construction applications incorporating natural resources of Papua new Guinea. Resources, Conservation and Recycling 2007; 51(4): 711-731. http://dx.doi.org/10.1016/j.resconrec.2006.12.003.

Machado CC, Sant’Anna GL, Lima DC, Carvalho CAB, Almeida A, Oliveira T. Durabilidade de solos estabilizados quimicamente com vistas á aplicação em estradas florestais. Revista Árvore 2006; 30(6): 981-988. http://dx.doi.org/10.1590/S0100-67622006000600013.

Millogo Y, Morel JC, Traoré K, Ouedraogo R. Microstructure, geotechnical and mechanical characteristics of quicklime-lateritic gravels mixtures used in road construction. Construction & Building Materials 2012; 26(1): 663-669. http://dx.doi.org/10.1016/j.conbuildmat.2011.06.069.

Nogami JS, Villibor DF. Pavimentos econômicos: tecnologia do uso dos solos finos lateríticos. São Paulo: Arte & Ciência; 2009. 782 p.

Pomakhina E, Deneele D, Gaillot A, Paris M, Ouvrard G. 29Si solid state NMR investigation of pozzolanic reaction occurring in lime-treated Ca-bentonite. Cement and Concrete Research 2012; 42(4): 626-632. http://dx.doi.org/10.1016/j.cemconres.2012.01.008.

Portelinha FHM, Lima DC, Fontes MPF, Carvalho CAA. Modification of a laterictic soil with lime and cement: an economical alternative for flexive pavement layers. Soils and Rocks 2012; 35(1): 51-63.

Rücknagel J, Götze P, Hofmann B, Christen O, Marschall K. The influence of soil gravel content on compaction behaviour and pre-compression stress. Geoderma 2013; 209-210(5): 226-232. http://dx.doi.org/10.1016/j.geoderma.2013.05.030.

Sessions J. Forest road operations in the tropics. Oregon: Springer; 2007. 170 p. http://dx.doi.org/10.1007/978-3-540-46393-1.

Silva TO, Carvalho CAB, Lima DC, Calijuri ML, Lani JL, Oliveira TM. Sistemas de classificações geotécnicas de solos: estudo de caso aplicado à rodovia não pavimentada VCS 346, Viçosa, MG. Revista Árvore 2010; 34(2): 313-321. http://dx.doi.org/10.1590/S0100-67622010000200014.

Trindade TP, Carvalho CAB, Lima DC, Barbosa PSA, Silva CHC, Machado CC. Compactação de solos: fundamentos teóricos e práticos. Viçosa: UFV; 2008. 95 p.

Trindade TP, Iasbik I, Lima DC, Minette E, Silva CHC, Carvalho CAB et al. Estudos laboratoriais do comportamento de um solo residual arenoso reforçado com fibras de polipropileno, visando à aplicação em estradas florestais. Revista Árvore 2006; 30(2): 215-222. http://dx.doi.org/10.1590/S0100-67622006000200008.
 

5a9fe0540e8825797677d856 floram Articles
Links & Downloads

FLORAM

Share this page
Page Sections