Floresta e Ambiente
Floresta e Ambiente
Original Article Conservation of Nature

Effects of Natural Atlantic Forest Regeneration on Soil Fauna, Brazil

Camara, Rodrigo; Santos, Gilsonley Lopes; Pereira, Marcos Gervasio; Silva, Cristiane Figueira da; Silva, Vanessa Francieli Vital; Silva, Rafaela Martins

Downloads: 0
Views: 155


The stage of natural forest regeneration may influence soil fauna. This study aimed to test the hypothesis that there are differences in the structure and composition of the soil fauna communities between areas undergoing less advanced (LAS) and more advanced (MAS) stages of natural regeneration of Seasonal Semideciduous Forest at Pinheiral, RJ. Soil fauna was sampled using pitfall traps, during dry and rainy seasons. Total abundance, abundance of the saprophagous/predator group, mainly Formicidae, and the relative participation of Orthoptera were higher in MAS, while the relative participation of Acari, Araneae, Coleoptera, Diptera and the herbivorous group were higher in LAS, during both climatic seasons. Some taxonomic groups were restricted to one of the areas. Richness, evenness and diversity tended to present higher values in LAS (dry season). The higher complexity of the soil fauna community was correlated to the higher leaf litter standing stock in LAS.


edaphic fauna, bioindicators, forest succession


Anderson JM, Ingram JS. Tropical soil biology and fertility: a handbook of methods. 2nd ed. Wallingford: CAB International; 1993. 221 p.

Barberena-Arias MF, Aide TM. Species diversity and trophic composition of litter insects during plant secondary succession. Caribbean Journal of Science 2003; 39(2): 161-169.

Begon M, Townsend CR, Harper JL. Ecology: from individuals to ecosystems. Malden: Blackwell Publishing; 2005. 759 p.

Caldas AJFS, Francelino MR. Fragmentação florestal na Serra da Concórdia, Vale do Paraíba: caracterização como subsídio à preservação da Mata Atlântica. Floresta e Ambiente 2009; 16(2): 8-19.

Camara R, Correia MEF, Villela DM. Effects of eucalyptus plantations on soil arthropod communities in a Brazilian Atlantic Forest conservation. Bioscience Journal 2012; 28(3): 445-455.

Commonwealth Scientific and Industrial Research Organisation – CSIRO. The insects of Australia: a textbook for students and research workers. 2 ed. Vol. 1, 2. New York: Cornell University Press; 1991. 1137 p.

Copatti CE, Daudt CR. Diversidade de artrópodes na serapilheira em fragmentos de mata nativa e Pinus elliottii (Engelm. var elliottii). Ciência e Natura 2009; 31(1): 95-113.

Correia MEF, Andrade AG. Formação de serapilheira e ciclagem de nutrientes. In: Santos GA, Camargo FAO, editores. Fundamentos da matéria orgânica do solo: ecossistemas tropicais e subtropicais. Porto Alegre: Gênesis; 2008. p. 137-170.

Correia MEF, Oliveira LCM. Fauna de solo: aspectos gerais e metodológicos. Seropédica: Centro Nacional de Pesquisa de Agrobiologia; 2000. 46 p. (Documentos, no. 112).

Cunha HF, Orlando TYS. Functional composition of termite species in areas of abandoned pasture and in secondary succession of the Parque Estadual Altamiro de Moura Pacheco, Goiás, Brazil. Bioscience Journal 2011; 27(6): 986-992.

Davis ALV, van Aarde RJ, Scholtz CH, Delport JH. Convergence between dung beetle assemblages of a post-mining vegetational chronosequence and unmined dune forest. Restoration Ecology 2003; 11(1): 29-42. http://dx.doi.org/10.1046/j.1526-100X.2003.00133.x.

Facelli JM, Williams R, Fricker S, Ladd B. Establishment and growth of seedlings of Eucalyptus obliqua: interactive effects of litter, water, and pathogens. Australian Journal of Ecology 1999; 24(5): 484-494. http://dx.doi.org/10.1046/j.1440-169x.1999.00988.x.

Guariguata MR, Ostertag R. Neotropical secondary succession: changes in structural and functional characteristics. Forest Ecology and Management 2001; 148(1-3): 185-206. http://dx.doi.org/10.1016/S0378-1127(00)00535-1.

Hammer Ø, Harper DAT, Ryan PD. PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica [online]. 2001 [cited 2014 nov. 22]; 4(1): 1-9. Available from: http://palaeo-electronica.org/2001_1/past/issue1_01.htm

Köppen W. Climatologia: con un estudio de los climas de la Tierra. Mexico: Fondo de Cultura Economica; 1948. 479 p.

Machado DL, Pereira MG, Correia MEF, Diniz AR, Menezes CEG. Fauna edáfica na dinâmica sucessional da Mata Atlântica em floresta estacional semidecidual na bacia do Rio Paraíba do Sul – RJ. Ciência Florestal 2015; 25(1): 91-106. http://dx.doi.org/10.5902/1980509817466.

Menezes CEG. Integridade de paisagem, manejo e atributos do solo no Médio Vale do Paraíba do Sul, Pinheiral-RJ [tese]. Seropédica: Universidade Federal Rural do Rio de Janeiro; 2008.

Menezes CEG, Correia MEF, Pereira MG, Batista I, Rodrigues KM, Couto WH et al. Macrofauna edáfica em estádios sucessionais de floresta estacional semidecidual e pastagem mista em Pinheiral (RJ). Revista Brasileira de Ciência do Solo 2009; 33(6): 1647-1656. http://dx.doi.org/10.1590/S0100-06832009000600013.

Moço MKS, Gama-Rodrigues EF, Gama-Rodrigues AC, Correia MEF. Caracterização da fauna edáfica em diferentes coberturas vegetais na região norte fluminense. Revista Brasileira de Ciência do Solo 2005; 29(4): 555-564. http://dx.doi.org/10.1590/S0100-06832005000400008.

Morais JW, Oliveira VS, Dambros CS, Tapia-Coral SC, Acioli ANS. Mesofauna do solo em diferentes sistemas de uso da terra no Alto Rio Solimões, AM. Neotropical Entomology 2010; 39(2): 145-152. PMid:20498948. http://dx.doi.org/10.1590/S1519-566X2010000200001.

Negrete-Yankelevich S, Fragoso C, Newton AC, Heal OW. Successional changes in soil, litter and macroinvertebrate parameters following selective logging in a Mexican Cloud Forest. Applied Soil Ecology 2007; 35(2): 340-355. http://dx.doi.org/10.1016/j.apsoil.2006.07.006.

Rousseau GX, Silva PRS, Celentano D, Carvalho CJR. Macrofauna do solo em uma cronosequência de capoeiras, florestas e pastos no Centro de Endemismo Belém, Amazônia Oriental. Acta Amazonica 2014; 44(4): 499-512. http://dx.doi.org/10.1590/1809-4392201303245.

Sabu TK, Shiju RT. Efficacy of pitfall trapping, Winkler and Berlese extraction methods for measuring ground-dwelling arthropods in moistdeciduous forests in the Western Ghats. Journal of Insect Science 2009; 10(98): 1-17. http://dx.doi.org/10.1673/031.010.9801.

Santos GL. Efeito da pedoforma no processo de sucessão secundária em fragmentos florestais na região do Médio Vale do Paraíba do Sul, Pinheiral, RJ [dissertação]. Seropédica: Universidade Federal Rural do Rio de Janeiro; 2014.

Siminski A, Mantovani M, Reis MS, Fantini AC. Sucessão florestal secundária no município de São Pedro de Alcântara, litoral de Santa Catarina: estrutura e diversidade. Ciência Florestal 2004; 14(1): 21-33. http://dx.doi.org/10.5902/198050981778.

Snyder BA, Hendrix PF. Current and potential roles of soil macroinvertebrates (earthworms, millipedes and isopods) in ecological restoration. Restoration Ecology 2008; 16(4): 629-636. http://dx.doi.org/10.1111/j.1526-100X.2008.00484.x.

Stork NE, Eggleton P. Invertebrates as determinants and indicators of soil quality. American Journal of Alternative Agriculture 1992; 7(1-2): 38-47.

Szinwelski N, Rosa CS, Schoereder J, Mews CM, Sperber CF. Effects of forest regeneration on crickets: evaluating environmental drivers in a 300-year chronosequence. International Journal of Zoology 2012; 2012: 1-13. http://dx.doi.org/10.1155/2012/793419.

Tedesco MJ, Gianello C, Bissani CA, Bohnen H, Volkweiss SJ. Análises de solo, plantas e outros materiais. 2 ed. Porto Alegre: Universidade Federal do Rio Grande do Sul; 1995. 174 p. (Boletim técnico, no. 5).

Wolkovich EM. Nonnative grass litter enhances grazing arthropod assemblages by increasing native shrub growth. Ecology 2010; 91(3): 756-766. PMid:20426334. http://dx.doi.org/10.1890/09-0147.1.

5a735e320e882574178b4567 floram Articles
Links & Downloads


Share this page
Page Sections